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Motivation

Motivation

Unit roots: do the data support the view that the trend is changing every
period or never?
Structural breaks: may be trend is changing sometimes? Changes in
persistence?
Cointegration: univariate and multivariate; with or without breaksю
Inference on the break dates
Predictability with non-stationary regressors
Non-stationary volatility: breaks in volatility, regime switching, ets.
Explosive bubbles: identificatio and testing
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Figure 1: Russian macroeconomic series and oil prices
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Testing for a unit root with possible presence of structural breaks

Testing for a unit root with possible presence of structural
breaks

Influence of linear trend and/or the initial condition on unit root testing
(Harvey et al. (2009), Harvey et al. (2012a))
Stationarity testing (Muller (2005), Harris et al. (2007))
Uncertainty over the break in unit root testing (Harvey et al. (2012b), Harvey
et al. (2013b))
Invalidity of Zivot and Andrews (1992) (Harvey et al. (2013a))
Robust testing for the trend function under uncertainty whether the series is
stationary, I(0), or integrated of order one, I(1)

Anton Skrobotov (Gaidar institute) ROBUST INFERENCE IN NON-STATIONARY TIME SERIESFebruary 15, 2024 4 / 39



ROBUST INFERENCE IN NON-STATIONARY TIME SERIES
Testing for a unit root with possible presence of structural breaks

Trend and initial condition in stationarity tests

Outline
1 Motivation
2 Testing for a unit root with possible presence of structural breaks

Trend and initial condition in stationarity tests
Pre-testing for the trend
On trend breaks and initial condition in unit root testing

3 Bootstrap inference for non-stationary time series
Testing for change in persistence
Testing for seasonal non-stationarity under time-varying volatility

4 Inference on structural breaks in univariate cointegrated models
5 Testing for predictability with possibly non-stationary and endogenous

predictors under non-stationary volatility
6 Testing and dating for explosive bubbles

Identification and dating the (explosive) bubbles under non-stationary
volatility
Dating the bubble

7 Reviews
8 Empirics
Anton Skrobotov (Gaidar institute) ROBUST INFERENCE IN NON-STATIONARY TIME SERIESFebruary 15, 2024 5 / 39



ROBUST INFERENCE IN NON-STATIONARY TIME SERIES
Testing for a unit root with possible presence of structural breaks

Trend and initial condition in stationarity tests

Trend and initial condition in stationarity tests

(Skrobotov, 2015):

yt = µ+ βt+ ut, t = 1, . . . , T, (1)
ut = ρut−1 + εt, t = 2, . . . , T, ρ = ρT = 1− c/T (2)

Null of stationarity (local to unit root) H0 : c ≥ c̄ > 0 against H1 : c = 0
Combination of Q(c̄) tests of Muller (2005) and S(c̄) tests of Harris et al.
(2007)

Definition 1

The modified intersection of rejections strategy IR∗
4 is defined as follows:

1) If sβ ≤ cvβ and sα ≤ cvα, then use the liberal decision rule IR(Qµ, Qτ , Sµ, Sτ );

2) If sβ ≤ cvβ and sα > cvα, then use the liberal decision rule IR(Sµ, Sτ ), the
corresponding scaling constant is defined as m∗∗

ξ ;

3) If sβ > cvβ and sα ≤ cvα, then use the liberal decision rule IR(Qτ , Sτ ), the
corresponding scaling constant is defined as mτ

ξ ;

4) If sβ > cvβ and sα > cvα, then use the decision rule reject H0, if Sτ > cvS,τξ .
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Pre-testing for the trend

Pre-testing for the trend

Skrobotov (2022b): H0 : β = 0

I(0) : T 3/2(β̂ − β) →d 12ωu

∫ 1

0
(s− 1/2)dB(r) = N(0, 12ω2

u),

I(1) : T 1/2(β̂ − β) =
T−5/2 ∑T

t=1 tut

T−3
∑T

t=1 t2
→d 3ωu

∫ 1

0
rB(r)dr = N

(
0, 6

5ω
2
ε

)
,

Ibragimov and Müller (2010): partition of the data into some fixed number
q ≥ 2 of equal groups of consecutive observations, consider group estimators
β̂j , j = 1, . . . , q, T δ(β̂1, . . . , β̂q) →d N(0,Σ) with some diagonal covariance
matrix Σ and δ = 1/2 or 3/2 depending on the order of intergartion of ut.

tβ =
√
q
β̂ − β0

sβ̂
(3)

with β̂ = q−1
∑q

j=1 β̂j and s2
β̂
= (q − 1)−1

∑q
j=1(β̂j − β̂)2.

Null hypothesis H0 is rejected at level α ≤ 0.05 if |tβ | exceeds the (1− α/2)
percentile of the Student’s t-distribution with q − 1 degrees of freedom.
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On trend breaks and initial condition in unit root testing

On trend breaks and initial condition in unit root testing

Skrobotov (2018b): extension of Harvey et al. (2012a)

yt = µ+ βt+ γTDTt(λ0) + ut, t = 1, . . . , T, (4)
ut = ρTut−1 + εt, t = 2, . . . , T, (5)

where DTt(λ0) = (t− ⌊λ0T ⌋)I(t > ⌊λ0T ⌋), I(·) is the indicator function and
the trend break occurs at time ⌊λ0T ⌋ (where λ0 is the corresponding break
fraction).
For small initial conditions, the minimun GLS-based test MDF -GLS by
Harvey et al. (2013b) should be used, and for large initial conditions, the
combination of minimum OLS-based test MDF -OLS (this is Zivot and
Andrews (1992) test) and OLS-based test with the estimated break date
ADF -OLStb(λ̂Dm) (where the break fraction λ̂Dm is estimated as in
(Harvey and Leybourne, 2013)) should be used, dependent on the robust
tests for breaks.
The modified A∗(sκ, sα) strategy is proposed.
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Testing for change in persistence

Testing for change in persistence

yt = µ+ βt+ ρtyt−1 + ut, (6)
ρt = 1 (yt ∼ I(1)) for t = 1, . . . , T1

ρt < 1 (yt ∼ I(0)) for t = T1 + 1, . . . , T
or vice versa (Kim, 2000; Kurozumi, 2005; Kejriwal and Perron, 2012)

at changes from 1 to 0.85 or vice versa at k* ¼ 0.5. Figure 1a, b corresponds
to the cases without a linear trend (l1 ¼ 0) and Figure 1c, d corresponds
to the cases with a linear trend (l1 ¼ 0.2). The dotted line in each figure is
the estimated constant (trend). As we can see from the figures, variance of
the process changes before/after the break point. In addition, the figures
appear to show a structural break in a constant and/or a linear trend. These two
phenomena sometimes appear in macroeconomic time series and hence, the
model (1) may be seen as an alternative to the usual trend-break model.

As shown in the literature, the process {xt} in equation (1) can be
expressed as

Dxt ¼ qtxt�1 þ /1tDxt�1 þ � � � þ /ptDxt�p þ ut; ð3Þ

where

qt ¼ �ð1� atÞwð1Þ
and

/jt ¼ atwj � ð1� atÞðwjþ1 þ � � � þ wpÞ; 1 � j � p � 1; /pt ¼ atwp: ð4Þ

Then, the testing problem (2) is equivalent to

H 0
0 : qt ¼ 0 8 t v.s. ð5Þ

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 20 40 60 80 100 120 140 160 180 200

5

10

15

20

25

30

35

40

45

50

55

0 20 40 60 80 100 120 140 160 180 200

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140 160 180 200

(a) (c)

(d)(b)

Figure 1. The simulated series; (a) non-trending case: a ¼ 1 fi 0.85, (b) non-trending case:
a ¼ 0.85 fi 1, (c) trending case: a ¼ 1 fi 0.85, (d) trending case: a ¼ 0.85 fi 1

184 Bulletin

� Blackwell Publishing Ltd 2005
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Testing for change in persistence

Testing for change in persistence

Skrobotov (2018a, 2022a): likelihood ratio test for the null hypothesis I(1)
against a change in persistence, I(0) → I(1) or I(1) → I(0)

yt = β′dt + ut, t = 1, . . . , T, (7)
ut = ρtut−1 + εt, t = 2, . . . , T, (8)

Rewrite:
yt = ρ1D1yt−1 + ρ2D2yt−1 + εt, (9)

where D1 = I(t ≤ ⌊λT ⌋), D2 = 1−D1.
Maximization of the likelihood over ρ̄1 and ρ̄2 (“d” means detrended):

LR(λ) = max
ρ̄1≤1,ρ̄2≤1

Ld(ρ̄1, ρ̄2, λ; σ̂
2, ϕ̂2)− Ld(1, 1, λ; σ̂2, ϕ̂2), (10)

Unknown date of change (exp-type test), lag length selection, sieve bootstrap
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Testing for seasonal non-stationarity under time-varying volatility

Testing for seasonal non-stationarity under time-varying
volatility

Cavaliere, Skrobotov and Taylor (2019)
Extension of Cavaliere and Taylor (2008a) to the seasonal context.
Adopt a periodic non-stationary volatility set-up which includes both the form
of Periodic Heteroskedasticity considered in Burridge and Taylor (2001).
Univariate seasonal time series {xSn+s}:

α(L)xSn+s = uSn+s, s = 1− S, . . . , 0, n = 2, . . . , N, (11)
ϕ(L)uSn+s = εSn+s (12)

εSn+s = σSn+seSn+s (13)

where S – number of seasons, α(L) = 1−
∑S

j=1 αjL
j is an S-order

autoregressive polynomial, ϕ(L) = 1−
∑p

j=1 ϕjL
j is a pth order

autoregressive polynomial, L is the lag operator such that
LSj+kySn+s = yS(n−j)+s−k. Sample size is T := SN , N – number of
seasonal cycles (eg years).
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Testing for seasonal non-stationarity under time-varying volatility

Testing for seasonal non-stationarity under time-varying
volatility

Test for seasonal unit roots in α(L) polynomial

Sth order polynomial a(L) can be factorised as α(L) =
∏⌊S/2⌋

k=0 ωk(L)

ω0(L) := (1− α0L) associates the parameter α0 with the zero frequency
ω0 := 0, ωk(L) := [1− 2(αk cosωk − βk sinωk)L+ (α2

k + β2
k)L

2]
corresponds to the conjugate (harmonic) seasonal frequencies (ωk, 2π − ωk),
ωk = 2πk/S, with the associated parameters αk and βk, k = 1, . . . , S∗,
S∗ := ⌊(S − 1)/2⌋, and, for S even, ωS/2(L) := (1 + αS/2L) associates the
parameter αS/2 with the Nyquist frequency ωS/2 := π

The null hypothesis can be partitioned as H0 = ∩⌊S/2⌋
k=0 H0,k, where

H0,0 : α0 = 1, H0,S/2 : αS/2 = 1, (14)
H0,k : αk = 1, βk = 0, k = 1, . . . , S∗. (15)
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Testing for seasonal non-stationarity under time-varying volatility

Testing for seasonal non-stationarity under time-varying
volatility

Expanding the composite AR(p+ S) polynomial ϕ∗(z) := α(z)ϕ(z) around
the zero and seasonal frequency unit roots exp(±i2πk/S), k = 0, ..., ⌊S/2⌋,
we obtain the auxiliary HEGY regression,

∆SxSn+s = π0x0,Sn+s−1 + πS/2xS/2,Sn+s−1 +

S∗∑
k=1

(πα,kx
α
k,Sn+s−1

+ πβ,kx
β
k,Sn+s−1) +

p∑
j=1

ϕ∗
j∆SxSn+s−j + εSn+s, (16)

where the regressors are defined as, x0,Sn+s :=
∑S−1

j=0 xSn+s−j ,
xS/2,Sn+s :=

∑S−1
j=0 cos[(j + 1)π]xSn+s−j , and

xα
k,Sn+s :=

∑S−1
j=0 cos[(j + 1)ωk]xSn+s−j , and

xβ
k,Sn+s := −

∑S−1
j=0 sin[(j + 1)ωk]xSn+s−j , in each case for k = 1, . . . , S∗.
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Testing for seasonal non-stationarity under time-varying
volatility

Unit roots at the zero, Nyquist and harmonic seasonal frequencies imply that
π0 = 0, πS/2 = 0 and πα,k = πβ,k = 0, k = 1, . . . , S∗, respectively – t− and
F− tests.
Non-stationary volatility in innovations: time deformation aspect to the
limiting distributions of the HEGY unit root statistics – incorrect size (even
asymptotically) if standard (homoskedastic) critical values are used.
Solution: standard wild bootstrap or seasonal block wild bootstrap – replicate
the correct first-order asymptotic null distributions of each of the HEGY
statistics
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Inference on structural breaks in univariate cointegrated
models

Kurozumi and Skrobotov (2018): constructing a confidence set for the break
date in cointegrating regression by inverting the test for the break location.

yt = w′
b,tβb + wb,t(λ0)

′δb + w′
f,tβf + et (17)

for t = 1, · · · , T , where wb,t, wb,t(λ0), and wf,t are pb-, pb-, and
pf -dimensional regressors, respectively, wb,t(λ0) = 1(t > [λ0T ])wb,t with 1(·)
being an indicator function, λ0 is a true break fraction, true break date is
T0 = [λ0T ]
wb,t and/or wf,t (fixed regressor) may be I(1) or I(0) (allowing DOLS), break
in trend
Test inversion: Constructing a confidence set for the break date by inverting
the test for the location of the break point.
For the unknown break point, we test for

HN : T0 = T1 vs. HA : T0 = T2 (18)

with the significance level α, and if the null hypothesis is accepted, then we
include T1 in the confidence set; otherwise we exclude T1 from the confidence
set
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Inference about structural breaks in univariate cointegrated
models

We cannot directly estimate model by using wb,t(λ0) because wb,t(λ0)
depends on the unknown break fraction λ0.
Maximizing the weighted average of P (φ rejects HN |δ, λ2) over δ and λ2

using some weighting functions, which is given by∫ ∫
P (φ rejects HN |δ, λ2) dQλ2(δ)dJ(λ2) (19)

where Qλ2
(δ) and J(λ2) are non-negative measures on Rpb and (0, 1),

respectively.
Test that maximizes the averaged power given by (19) rejects the null
hypothesis when

L̃RT (λ1) =

∫
λ2∈Λε

(1 + c)−pβ/2 exp

{
c

2(1 + c)σ2

y′Mw1
R(λ2, λ1) (R(λ2, λ1)

′Mw1
R(λ2, λ1))

−1
R(λ2, λ1)

′Mw1
y
}
dλ2 > a
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Inference about structural breaks in univariate cointegrated
models

Limiting distribution of L̃RT (λ1) for different models
Dependence on localizing parameter c.

sup-LRT (T1) = max
T2∈Tϵ

FT2
(T1), (20)

avg-LRT (T1) =
1

T ∗

∑
T2∈Tϵ

FT2
(T1), (21)

exp-LRT (T1) = log

{
1

T ∗

∑
T2∈Tϵ

exp

(
1

2
FT2(T1)

)}
, (22)

where Tϵ = {T2 : ϵT ≤ T2 < T1 − ϵT, T1 + ϵT < T2 ≤ (1− ϵ)T}, T ∗ is the
number of T2 included in Tϵ, and FT2(T1) is the test statistic for the simple
null hypothesis of T0 = T1 against T0 = T2.
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Testing for predictability with possibly non-stationary and
endogenous predictors under non-stationary volatility

Ibragimov, Kim and Skrobotov (2023):
Linear predictive regression model:

yt = α+ βxt−1 + ut, t = 1, ..., T, (23)

Volatility model:

ut = vtεt,

H0 : β = 0: replace vt by its consistent estimator σ̂((t− 1)/T )

Test statistic:

τ(σ̂) =
1

T 1/2

T∑
t=1

sgn(xt−1)
yt

σ̂((t− 1)/T )
, (24)

Uniform convergence of σ̂2(r) to σ2
T (r)

sign(xt−1) – asymptotic normality of τ(σ̂) regardless of endogeneity of xt−1

and nonstationarity
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Identification the bubbles under non-stationary volatility

Kurozumi, Skrobotov and Tsarev (2020):
DGP for {yt} in TVP form:

yt = (1 + δt)yt−1 + εt or ∆yt = δtyt−1 + εt (25)

with the following definition of δt
4 regimes: δt > 0 – explosive regime, < 0 – stationary collapsing regime, = 0
– unit root regime.
Non-stationary volatility: εt = σtzt, where {zt} is a MDS with respect to
natural filtration, and the volatility σt is defined as σ⌊sT⌋ = ω(s) for
s ∈ [0, 1], where ω(·) ∈ D is a non-stochastic and strictly positive function
satisfying 0 < ω < ω(s) < ω̄ < ∞.
FCLT:

1√
T
y⌊rT⌋ =

1√
T

⌊rT⌋∑
t=1

εt ⇒ ω̄W (η(r)) =: ω̄W η(r) (0 ≤ r ≤ 1), (26)

for y⌊·⌋ defined in (25), where ⇒ denote weak convergence in D[0, 1] and
W (·) is a standard BM, W η(·) – variance transformed BM
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Identification and dating the (explosive) bubbles under
non-stationary volatility

Partial sum process of {εt} is asymptotically characterized by the variance
profile (Cavaliere and Taylor (2008b)):

η(s) :=

(∫ 1

0

ω(r)2dr

)−1 ∫ s

0

ω(r)2dr.

Strictly monotonically increasing function ⇒ unique inverse g(s) := η−1(s)
⇒ ỹt = yt′ − yt′=0 with a non-decreasing sequence t′ = ⌊g(t/T )T ⌋ ⇒

T−1/2ỹ⌊rT⌋ ≈ T−1/2y⌊g(⌊rT⌋/T )T⌋ ≈ T−1/2y⌊g(r)T⌋ ⇒ ω̄W η(g(r)) = ω̄W (r)
(27)

because W η(g(r)) = W (η(g(r))) = W (r)
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Identification and dating the (explosive) bubbles under
non-stationary volatility

Time-transformed tests:

STADF = sup
τ2∈[τ0,1]

TADF τ2
0 and

GSTADF (τ0) = sup
τ2∈[τ0,1],τ1∈[0,τ2−τ0]

TADF τ2
τ1 ,

where TADF τ2
τ1 =

ỹ2⌊τ2T⌋ − ỹ2⌊τ1T⌋ − ω̄2(⌊τ2T ⌋ − ⌊τ1T ⌋)

2ω̄
√∑⌊τ2T⌋

t=⌊τ1T⌋+1 ỹ
2
t−1

. (28)

The limiting distributions are the same as in the case of homoskedasticity
⇒ no need any bootstrap procedures to control the size.
Estimator of η(s): non-parametrically estimate autoregressive coefficient,
collect residuals, and use them for estimating the variance profile.
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Dating the bubble

Kurozumi and Skrobotov (2022):
Four-regimes bubble model

yt = µ+ ut, (29)

ut =


ut−1 + εt, t = 2, . . . , ke,

(1 + δ1)ut−1 + εt, t = ke + 1, . . . , kc,

(1− δ2)ut−1 + εt, t = kc + 1, . . . , ⌊kr,
ut−1 + εt, t = kr + 1, . . . , T,

(30)

a unit root process until the time kr,
then explosive process until kc,
then after kc, there may be a stationary collapsing regime (which is
interpreted as the return to normal market behavior) until the time kr,
then again unit root process.
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Dating the bubble

Outline
1 Motivation
2 Testing for a unit root with possible presence of structural breaks

Trend and initial condition in stationarity tests
Pre-testing for the trend
On trend breaks and initial condition in unit root testing

3 Bootstrap inference for non-stationary time series
Testing for change in persistence
Testing for seasonal non-stationarity under time-varying volatility

4 Inference on structural breaks in univariate cointegrated models
5 Testing for predictability with possibly non-stationary and endogenous

predictors under non-stationary volatility
6 Testing and dating for explosive bubbles

Identification and dating the (explosive) bubbles under non-stationary
volatility
Dating the bubble

7 Reviews
8 Empirics
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Estimation of the break dates:
Harvey et al. (2017): minimisation of SSR – compitationally expensive
Phillips et al. (2015): recursive estimation – inaccurate
Our sample splitting approach: First, estimate the break date for misspecified
two-regime model minimizing SSR ⇒ the obtained break date is consistent
for the date of collapse: limT→∞ P (k̂ = kc) = 1

Second, split the sample into two parts and estimate τe and τr

For the estimation of kr, we minimize the sum of the squared residuals using
the second sub-sample
Asymptotic property of k̂r: two cases: δ1 > δ2 (consistency of k̂r) and
δ1 < δ2 (asy distribution of k̂r).
Non-stationary volatility: robust, but can be extended by using WSLS in
minimisation
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Dating the bubble

Empirical application: NASDAQ Composite Index

Figure: The bubble origination, collapse and recovery dates of the NASDAQ Composite
Index
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Dating the bubble

Empirical application: U.S. house price index

Figure: The bubble origination, collapse and recovery dates of the HP Index
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Skrobotov (2020) (Applied Econometrics) – review on structural breaks in
unit root testing
Skrobotov (2021a,b) (Applied Econometrics) – two reviews on testing and
inference in cointegration models (univariate and multivariate)
Skrobotov (2023) (Dependence Modelling) – review on bubbles
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Skrobotov and Fokin (2018)
asymmetric reaction of the Bank of Russia to the positive and negative
shocks of external economic conditions from 1999 to 2014
TVECM: nonlinear cointegrating regression with the real exchange rate and
real oil prices
regimes are depended on the sign of the oil price shock
Polbin and Skrobotov (2021)
aggregated consumption function for Russia, households consume a constant
fraction of a permanent income
structural break in the parameter of the propensity to consume, endogeneity
the parameter of the propensity to consume of permanent GDP decreased by
6.5-9.2% after 2014
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Dobronravova, Perevyshin, Skrobotov and Shemyakina (2019)
33 food products prices in 78 Russian regions from 2003 to 2018
unit root null hypothesis versus a nonlinear alternative, and the null of
linearity against a nonlinear alternative
About a 40% of time series corresponds to the three-regime TAR-model and
weak form of the law of one price.
Perevyshin and Skrobotov (2017)
law of one price in 76 Russian regions for 69 goods
Panel unit root tests: evidence in favor of the law of one price for most food
products, medicines, household chemicals and some of the services provided
by public companies
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Contributions

The results of the dissertation research were used in the following projects:
Russian Science Foundation Project No. 19-18-13029 "Modern methods of
robust inference in finance and economics, with applications to the study of
crises and their propagation in financial and economic markets" 2017-2020,
principal investigator;
Russian Science Foundation Project No. 20-78-10113 "New methods of
robust inference for developing markets: Financial bubbles, time-varying
volatility, structural breaks and beyond" 2020-2023, leading investigator.

More than 20 conferences, including: 10-16th International Conference on
Computational and Financial Econometrics, 2nd, 4th, 5th, 7th Annual Conference
of the International Association for Applied Econometrics, World Congress of
Econometric Society 2021, among others, 12th International Vilnius Conference
on Probability Theory and Mathematical Statistics and 2018 IMS Annual Meeting
on Probability and Statistics.
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List of author’s original articles

Confidence Sets for the Break Date in Cointegrating Regressions (with E.
Kurozumi) // Oxford Bulletin of Economics and Statistics, 2018, 80,
514-535. [Q1]
On Bootstrap Implementation of Likelihood Ratio Test for a Unit Root //
Economics Letters, 2018, 171, 154-158. [Q2]
Wild Bootstrap Seasonal Unit Root Tests for Time Series with Periodic
Non-Stationary Volatility (with G. Cavaliere and A.M.R. Taylor) //
Econometric Reviews, 2019, 38, 509-532. [Q1]
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List of author’s original articles

On Robust testing for Trend // Economics Letters, 2022, 212, In Press [Q1]
Time-Transformed Test for the Explosive Bubbles under Non-stationary
Volatility (with E. Kurozumi and A. Tsarev) // Accepted in Journal of
Financial Econometrics [Q1]
Likelihood ratio test for change in persistence // Accepted in
Communications in Statistics – Theory and Methods [Q3]
On the asymptotic behaviour of the bubble dates estimators (with E.
Kurozumi) Accepted in Journal of Time Series Analysis [Q2]
Testing for Explosive Bubbles: a Review // Accepted in Dependence
Modeling [Q3]
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New robust inference for predictive regression (with R. Ibragimov and J. Kim)
// Accepted in Econometric theory [Q1]
The price convergence of individual goods in the Russian regions (with Yu.
Perevyshin) // Journal of the New Economic Association, 2017, 35, 71-102.
[Q4]
Testing Asymmetric Convergence of the Real Exchange Rate to Equilibrium
During Ruble Exchange Rate Targeting (with N. Fokin) // Economic Policy,
2018, 13, 132–147. [Q3]
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Structural breaks in cointegration models // Applied Econometrics, 2021, 63,
117-141. [Q3]
Structural breaks in cointegration models: Multivariate case // Applied
Econometrics, 2021, 64, 83-106. [Q3]
Limits of regional food price differences and invisible hand (wuth E.
Dobronravova, Y. Perevyshin and K. Shemyakina) // Applied Econometrics,
2019, 53, 30-54. [Q3]
Survey on structural breaks and unit root tests // Applied Econometrics,
2020, 58, 96-141. [Q3]
Testing for structural break in aggregated consumption function of Russian
households (with A. Polbin) // Voprosy Ekonomiki, 2021, 5, 91—106. [Q2]
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