
On Bootstrap Implementation of
Likelihood Ratio Test for a Unit Root

ANTON SKROBOTOV∗

The Russian Presidential Academy
of National Economy and Public Administration

February 25, 2018

Abstract

In this paper we investigate the bootstrap implementation of the likelihood ratio test for a
unit root recently proposed by Jansson and Nielsen (2012). We demonstrate that the likelihood
ratio test shows poor finite sample properties under strongly autocorrelated errors, i.e. if the
autoregressive or moving average roots are close to -1. The size distortions in these case
are more pronounced in comparison to the bootstrap M and ADF tests. We found that the
bootstrap version of likelihood ratio test (with autoregressive recolouring) demonstrates better
performance than bootstrap M tests. Moreover, the bootstrap likelihood ratio test show better
finite sample properties in comparison to the bootstrap ADF in some cases.
Key words: likelihood ratio test, unit root test, bootstrap.
JEL: C12, C22.

1 Introduction

The implementation of bootstrap in unit root testing has a long history in econometric time se-
ries literature. The theory of bootstrap metodology in unit root context was developed in, inter
alia, Basawa et al. (1991a,b) and Park (2002, 2003). Chang and Park (2003) considered sieve-
based implementation of the residual-based bootstrap for standard ADF type test and Park (2006)
considered a bootstrap theory for weakly integrated processes. Looking beyond the ADF type
test, Cavaliere and Taylor (2009a) investigated the bootstrap implementation of the so-called M
type unit rot tests proposed by Stock (1999). They took attention to the wild bootstrap and het-
eroskedasticity pattern of underlying errors in their model. It should be noted that Palm et al.
(2008) review different bootstrap unit root tests. Smeekes (2012) analysed the role of detrending
in the first step of the bootstrap algorithm and also in the bootstrap recursion. He considered OLS,
GLS and recursive detrending procedures.
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Another field of research is the development of optimal tests. The seminal paper is Elliott
et al. (1996) (hereafter ERS) who developed a nearly (asymptotically) efficient test and obtained
Gaussian asymptotic power envelopes for unit root tests. Recently Jansson and Nielsen (2012)
developed the likelihood ratio test derived from the full likelihood (in contrast to conditional like-
lihood, as in standard ADF test, conditioning being with respect to the initial observation). The
proposed likelihood ratio test is also nearly (asymptotically) efficient but not asymptotically equiv-
alent to the test proposed by ERS. The likelihood ratio test was further extended to a seasonal unit
root context (Jansson and Nielsen (2011)) and cointegration context (Boswijk et al. (2015)).

The standard problem in unit root testing is serious size distortion when the autoregressive or
moving average roots are close to -1. Serious size distortions of Jansson and Nielsen (2012) test
are even more pronounced than conventional ADF and M tests in some cases. We propose to use
the sieve-based bootstrap version (recoloured bootstrap) in the spirit of Chang and Park (2003)
and Cavaliere and Taylor (2009a). Monte-Carlo simulations show the good finite sample proper-
ties of the bootstrapped version of Jansson and Nielsen (2012) which outperforms the bootstrap
ADF test in some cases.

The paper is organized as follows. In Section 2 we formulate the model and likelihood ratio
test statistics. The bootstrap algorithm and its asymptotic properties are discussed in Section
3. The finite sample properties via Monte-Carlo simulations are presented in Section 4. Section
5 concludes. All proofs and additional Monte-Carlo results are contained in the Supplementary
Appendix.

2 Likelihood ratio test

Consider the following data generating process (DGP):

yt = β′dt + ut, t = 1, . . . , T, (1)

ut = ρut−1 + εt, (2)

φ(L)εt = et, (3)

where dt = 1 (constant case) or dt = (1, t)′ (trend case), β is an unknown parameter. The kth order
lag polynomial φ(z) satisfies: (a) 0 ≤ p < ∞, and (b) φ(z) 6= 0 for all |z| ≤ 1. This assumption is
standard and imposes that φ(z) is a stationary finite-order polynomial, but this assumption can be
weakened without changing our main results. The innovation process et is a martingale difference
(with some filtration Ft) with E(e2

t |Ft−1) = σ2 and E|et|r < K < ∞ for r ≥ 4. The initial
condition is assumed to be u0 = op(T

1/2).
Our purpose is to test the null hypothesis of a unit root, H0 : ρ = 1 against the stationary

alternative H1 : |ρ| < 1. Recently Jansson and Nielsen (2012) proposed nearly efficient likelihood
ratio unit root test for the testing this null hypothesisH0. Let the log likelihood function associated
with the model (1)-(3) with u1 = · · · = u−p = 0 (up to the constant) be1

L(ρ, λ, β;σ2, φ) = −T
2

log σ2 − 1

2σ2
(Yρ,φ −Dρ1,ρ2,φβ)′(Yρ,φ −Dρ,φβ), (4)

where y0 = · · · = y−p = 0, d0 = · · · = d−p = 0, and p is the order of the polynomial φ(L) =
1− φ1L− · · · − φpLp. Matrices Yρ,φ and Dρ,φ are defined as (1− ρL)φ(L)yt and (1− ρL)φ(L)d′t,

1We suppress the dependence of all terms on T for notational convenience.
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respectively. Then the likelihood ratio test statistic is written as

LR = max
ρ̄≤1,β

L(ρ̄, β; σ̂2, φ̂2)−max
β

L(1, 1, β; σ̂2, φ̂2)

= max
ρ̄
L(ρ̄; σ̂2, φ̂2)− L(1; σ̂2, φ̂2), (5)

where σ̂2 and φ̂ are the estimators of σ2 and φ = (φ1, . . . , φk)
′, respectively, and

L(ρ;σ2, φ2) = −T
2

log σ2 − 1

2σ2
Y ′ρ,φYρ,φ +

1

2σ2
(Y ′ρ,φDρ,φ)(D′ρ,φDρ,φ)−1(D′ρ,φYρ,φ) (6)

is the profile log likelihood function obtained by maximizing L(ρ, β;σ2, φ2) with respect to the nui-
sance parameter β, which is related to the deterministic component. Substituting the consistent
estimators σ̂2 and φ̂ into (5), the LR statistic is maximized with respect to the only one parameter,
ρ, although there is no closed form expression for this statistic. We discuss the choice of σ̂2 and φ̂
in Section 4.

Jansson and Nielsen (2012) found the limiting distribution of the LRi test statistic (i = µ for
the constant case and i = τ for the trend case) under the null hypothesis. In the constant case
(dt = 1), we have

LRµ ⇒ max
c̄≤0

Λ(c̄) =: ξµ, (7)

where

Λ(c̄) = c̄S − 1

2
c̄2H, S =

1

2
(W (1)2 − 1), H =

∫ 1

0

W (r)2dr.

In the trend case (dt = (1, t)′), we have

LRτ ⇒ max
c̄≤0

Λτ (c̄) =: ξτ , (8)

where

Λτ (c̄) = Λ(c̄) +
1

2

(
(1− c̄)W (1) + c̄2

∫ 1

0
rW (r)dr

)2

1− c̄+ c̄2/3
− 1

2
W (1)2.

Remark 1 We note that in the constant case the limiting distribution of the LRµ test coincides
with the case of the absence of the deterministic term. This is a standard result for GLS-based
tests.

Remark 2 As Jansson and Nielsen (2012) noted in their Discussion section, the LR test can not
be interpreted a an (asymptotically) point optimal test of ERS. This is because the LR test can
be expressed as point optimal test with ĉLR as argument, where ĉLR is based on maximising the
likelihood function under the alternative hypothesis. However, this estimate ĉLR is random in the
limit. Also, while the limiting distribution of the LR test coincides with the limiting distribution of
theADF-GLS test proposed by ERS in the constant case, this is not true for the trend case. This
is due to the ADF-GLS test using a plug-in estimator of β first based on a fixed non-centrality
parameter, say, c̄ERS . Then this test profiles out other nuisance parameters (σ2 and φ). The LR
test, conversely, uses plug-in estimators of σ2 and φ, and then profiles out β which affect the
limiting distribution. Note that these distinctions of the tests are virtually negligible in terms of
local asymptotic power. See Jansson and Nielsen (2012, Section 3) for more discussion.
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3 Bootstrap Likelihood Ratio Test

As we will see in the simulation section, the likelihood ratio test suffers from serious size distor-
tions when the errors are strongly autocorrelated. This phenomenon is already observed for many
other unit root tests (see, e.g., Cavaliere and Taylor (2009a) for so called M unit root tests). The
extensive literature proposed to use bootstrap methodology to correct the inference under the null
hypothesis. In order to eliminate the influence from serial correlation, in this section we consider
sieve based implementation (recoloring) of the bootstrap likelihood ratio unit root test of Jansson
and Nielsen (2012).2

In this study, we focus on residual based i.i.d. bootstrap of Chang and Park (2003), Park (2002,
2003) with sieve based recoloring.3 First we need to define residuals for our botstrap algorithm.
Define (quasi) GLS-residuals ûit (i = µ, τ ) as

ûit = yt − β̂′i,GLSdt,

where β̂′i,GLS is the OLS estimate from the regression of yρ̄ = [y1, (1− ρ̄L) y2, . . . , (1− ρ̄L) yT ]′

on Z ρ̄ = [d1, (1− ρ̄L) d2, . . . , (1− ρ̄L) dT ]′ with ρ̄ = 1− c̄/T and c̄ = 7 for the constant case and
c̄ = 13.5 for the trend case. Next define êt as residuals from the fitted ADF regression

∆ûit = ρ̂ûit−1 +

p∑
j=1

φ̂ij∆û
i
t−j + êit. (9)

Next we outline the bootstrap algorithm.

Algorithm 1 (Bootstrap LR Test)

Step 1: Obtain the standard LR test statistics, LRi (i = µ, τ) along with the
corresponding OLS residuals, êit, from the (quasi) GLS-detrended ADF re-
gression (9). Set êit = 0 for t = 1, . . . , p+ 1.

Step 2: Generate the vectors of i.i.d. bootstrap errors {e∗t}Tt=1 according to resam-
pling from the centered residuals (êit − êi), where êi = T−1

∑T
t=1 ê

i
t.

Step 3: Construct u∗t through the recursion

u∗t =

p∑
j=1

φ̂ju
∗
t−j + e∗t , t = p+ 1, T,

using estimated parameters φ̂j from the regression (9) initialized at u∗1 =
· · · = u∗p = 0 and then construct the bootstrap sample data through the
recursion

∆y∗t = u∗t , t = 2, . . . , T,

initialized at y∗1 = 0.

2Preliminary simulation showed that the same bootstrap likelihood ratio tests, but without recoloring, do not allow
us to fix the size distortions under strongly autocorrelated errors. We do not provide these results to save space.

3We also could implement wild bootstrap schemes according Cavaliere and Taylor (2008, 2009a,b) if we suspect
a conditionally heteroskedasticity or non-stationary volatility in the errors.
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Step 4: Using the bootstrap sample, {y∗t }, compute the bootstrap LR statistics, de-
noted LR∗,i (i = µ, τ) exactly as was done for the original data in Step 1
(including any de-trending), for some fixed lag length p∗ ≥ 0.

Step 5: Bootstrap p-values are then defined as: P ∗i,T := G∗i,T (LRi) (i = µ, τ), where
G∗i,T (·) (i = µ, τ) denote the conditional (on the original sample data) cu-
mulative distribution functions (cdf’s) of LR∗,i. In practice, the cdf’s re-
quired here will be unknown, but can be approximated in the usual way
through numerical simulation.

Remark 3 In Step 1, we use the residuals êit from the (quasi) GLS-detrended ADF regression
(9). Smeekes (2012) investigated the effect of the detrending method on asymptotic validity of the
bootstrap algorithms. He demonstrated that the bootstrap test was valid for different methods of
detrending (recursive or full-time and OLS or GLS) in the first step of the algorithm for generating
bootstrap errors. The detrending matters only for constructing bootstrap test statistics due to
asymptotic properties of the original asymptotic tests. Moreover, there are other ways to generate
the bootstrap sample. For example, we can impose the unit root null hypothesis to obtain êit (see
Remark 4 of Cavaliere and Taylor (2009a)). But the simulation results seem to be very similar
across different methods and we do not report on them. The full set of the simulation results is
available upon request.

Remark 4 In Step 4, the lag length p∗ for the bootstrap tests should not be lower than k from the
orignal tests. In our simulations, we just set p∗ = p as is common in the literature. However,
there are studies (see, e.g., Smeekes and Taylor (2012)) where p∗ is choosen in each bootstrap
replication.

We now proceed to the asymptotic properties of our proposed bootstrap algorithm.

Proposition 1 Let the assumptions of (1)-(3) hold. Then LR∗,i ⇒p ξ
i (i = µ, τ), where⇒p is

used to denote weak convergence in probability in the sense of Giné and Zinn (1990). Also,
P ∗T

w→ U [0, 1], where P ∗T is again used generically to denote any of the bootstrap p-values of
the LR tests, and U [0, 1] denotes a uniform distribution on [0, 1].

Remark 5 The Proposition 1 implies that the bootstrap testLR∗,i (i = µ, τ ) attains the same first-
order limiting null distribution as the corresponding original test LRi. Moreover, the bootstrap
p-values are (asymptotically) uniformly distributed under the null hypothesis, implying that the
test is asymptotically size controlled.

Remark 6 It can be shown that Proposition 1 also hold under local alternative of the form ρ =
1− c/T for c ≥ 0 and, therefore, the bootstrap LR test has the same local asymptotic power as the
local asymptotic power of the size-adjusted original test. Under the fixed alternative, the bootstrap
LR test has the same consistency properties as the original LR test.

4 Finite Sample Size and Power

In this section we investigate the finite sample behavior of our proposed bootstrap likelihood ratio
test. We compare this test with commonly used bootstrap unit root tests proposed by Cavaliere
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and Taylor (2009a) (so-called M-tests)4 and Chang and Park (2003) (augmented Dickey-Fuller
test), both with autoregressive recolouring.

Our simulations are based on the following DGP (we assume no deterministic component
without loss of generality):

ρ(L)yt = εt, (10)

φ(L)εt = θ(L)et, (11)

with y1 = ε1 = 0 and et ∼ i.i.d.N(0, 1). The deterministic term is set to be zero without loss
of generality. We generate the data for samples of T = 50, 100 and 200 with 10,000 Monte-
Carlo replications. For analysis of the weak dependence of the errors we focus on (first-order)
autoregressive errors (φ(L) = 1−φL, θ(L) = 1) and (first-order) moving average errors (φ(L) = 1,
θ(L) = 1 + θL). The results are reported for φ = {−0.8,−0.5, 0.5, 0.8} in the AR(1) case and
θ = {0.8, 0.5,−0.5,−0.8} in the MA(1) case. We also report results for the IID case (φ(L) = 1,
θ(L) = 1).

For implementation of the LR tests we use two different popular types of the consistent esti-
mators of σ2 and φ. The first is recommended in (5), σ̂2 = (T −p−1)−1

∑T
t=k+1 (∆yt − κ̂′Zt)2 and

φ̂ = (0, Ik)κ̂, where κ̂ is the OLS-estimator in the regression of ∆yt on Zt = (∆d′t,∆yt−1, . . . ,
∆yt−k)

′. These estimators impose the null hypothesis on the regression ADF regression. We de-
note the LR test with this type of estimators as LRi

1. The second type uses the ADF-regression
under the alternative hypothesis, so that σ̂2 = (T −k−1)−1

∑T
t=k+1 (êit)

2 and φ̂ = (φ̂i1, φ̂
i
1, . . . , φ̂

i
k)
′

from the regression (9). We denote the LR test with this type of estimators as LRi
2.

We compare standard LR tests (LR1 and LR2) with their bootstrap counterparts (LR∗1 and
LR∗2) and classical bootstrap tests, MZ∗ρ , MSB∗, MZ∗t , MP ∗t and ADF ∗. Table 1 represents the
size of these tests in the constant case (here ρ(L) = 1 − L). For the IID case the size of all tests
is close to the nominal one (although slightly undersized). The size of LR∗1 and LR∗2 is closer to
the nominal one than the other bootstrap tests. For negative AR(1) errors, LR2 is oversized but
this oversizing vanishes for its bootstrap counterpart. Again, the LR∗1 and LR∗2 control size well
while we find serious undersizing for so-called M-tests. For positive AR(1) errors the both LR1

and LR2 are seriously undersized especially for φ = 0.8 even for T = 100 and 200. This problem
is fixed by applying bootstrap. The size of LR∗1 and LR∗2 is closer to the nominal one than all other
tests.

Next consider MA(1) errors. For positive θ we observe greatly improved size for bootstrap
LR tests in comparison to their non-bootstrap counterparts. Again, the size is better than other
bootstrap tests considered. For negative θ we have the standard problem of the oversizing of non-
bootstrap tests, especially for LR2. The size of LR∗1 and LR∗2 is considerably smaller than LR1 and
LR2, respectively. However, it is still larger when compared to all other bootstrap tests. Overall,
the size of LR∗1 and LR∗2 is better for all cases except for a negative MA term. Also, the size
improves if the sample size increases for all cases.

Table 2 represents the finite sample power of all tests. We investigate the power of the tests
under a near integrated alternative, so that ρ(L) = 1 − (1 − c/T )L)) with c = 7 as is common
in unit root literature. For AR(1) errors the power of LR∗1 and LR∗2 is the best for all cases except
the case of φ = −0.8, where the ADF ∗ test outperforms all other tests. The power of M-tests
is considerably lower than LR∗1, LR∗2 and ADF ∗. For MA(1) errors, LR∗1 and LR∗2 outperform all

4We note that while Cavaliere and Taylor (2009a) investigate the wild bootstrap with heteroskedastic errors, their
results on stationary autoregressive errors dynamic also hold.
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other tests when the MA parameter θ is positive. For negative θ, theADF ∗ test has greater power.
Again, all M-tests have lower power than LR∗1, LR∗2 and ADF ∗. Comparing two bootstrap LR
tests, LR∗1 and LR∗2, we observe very similar power properties except for the case of negative θ. In
this case LR∗2 outperforms LR∗1. Refering to Table 1, we observe, that in this case LR∗2 has a size
closer to the nominal one in comparison to LR∗1.

Tables S.1 and S.2 in Supplementary Appendix show finite sample size and power, respec-
tively, for the trend case (with c = 13.5 in ρ(L) = 1− (1− c/T )L)). Quantitatively, the results are
similar to the constant case, but we have a greater performance of the LR∗2 test in comparison to
LR∗1 and ADF ∗.

Summarizing results, we found that the LR∗2 test has great finite sample properties and can
be performed in conjunction with the popular bootstrap ADF test. The latter test outperforms the
former in the cases of negative MA and very negative AR components across all cases considered.

5 Conclusion

In this paper we investigated the bootstrap implementation of the likelihood ratio test for a unit
root with different types of nuisance parameter estimators. It was shown that while the standard
LR test shows serious size distortion, its bootstrap counterpart has good finite sample properties.
We concluded that the bootstrap LR test can be used as a complement for the bootstrap ADF test
with GLS detrending.
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Table 1. Finite sample size (constant case) – c = 0

φ/θ T LR1 LR2 LR∗
1 LR∗

2 MZ∗
ρ MZ∗

t MSB∗ MP ∗
t ADF ∗

IID 0 50 4.0 5.5 3.6 3.6 3.3 3.3 3.4 3.3 3.5
100 3.4 4.3 3.7 3.6 3.4 3.3 3.3 3.4 3.5
200 3.9 4.4 4.2 4.2 4.0 4.1 4.1 4.1 4.2

AR(1) -0.8 50 4.1 10.2 3.3 3.6 0.5 0.4 0.6 0.6 2.9
100 3.6 6.2 3.1 3.0 1.5 1.4 1.7 1.7 2.9
200 4.3 5.7 3.9 3.9 3.4 3.3 3.5 3.5 4.0

-0.5 50 4.0 8.8 3.7 3.8 2.1 2.2 2.2 2.2 3.2
100 4.1 6.4 3.9 3.9 3.3 3.2 3.3 3.3 3.7
200 4.1 5.2 3.9 3.9 3.5 3.5 3.6 3.7 3.7

0.5 50 0.3 2.0 3.2 3.1 1.6 1.6 1.7 1.7 2.1
100 1.3 2.6 3.6 3.6 2.8 2.8 2.9 3.0 3.2
200 2.4 3.3 3.8 3.9 3.5 3.5 3.6 3.7 3.9

0.8 50 0.1 0.6 4.1 4.2 1.0 1.0 1.0 0.9 3.0
100 0.3 1.0 3.8 3.7 2.8 2.8 2.6 2.6 3.3
200 1.6 2.5 4.4 4.4 4.0 4.1 4.0 4.0 4.2

MA(1) 0.8 50 0.5 3.0 3.3 3.0 0.7 0.7 0.7 0.7 1.4
100 0.7 3.2 3.6 3.3 1.2 1.3 1.3 1.3 2.2
200 1.4 3.9 3.9 3.6 2.3 2.4 2.4 2.5 3.5

0.5 50 0.7 2.8 2.9 2.5 1.2 1.2 1.2 1.3 1.7
100 1.3 3.3 3.3 3.2 2.5 2.5 2.5 2.5 2.9
200 2.6 4.0 4.1 3.9 3.5 3.7 3.5 3.4 3.7

-0.5 50 8.5 17.8 8.9 8.6 5.6 5.7 5.6 5.5 7.4
100 6.3 11.8 6.7 6.5 4.4 4.1 4.5 4.6 5.8
200 5.8 8.6 5.5 5.4 4.4 4.4 4.5 4.5 5.1

-0.8 50 26.0 47.0 28.2 27.2 16.6 16.3 16.5 16.6 23.0
100 13.2 27.8 14.3 12.8 5.6 5.4 5.7 5.7 11.1
200 10.5 19.9 9.9 8.4 3.4 3.4 3.4 3.5 8.2
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Table 2. Finite sample power (constant case) – c = 7

φ/θ T LR1 LR2 LR∗
1 LR∗

2 MZ∗
ρ MZ∗

t MSB∗ MP ∗
t ADF ∗

IID 0 50 35.0 46.0 32.6 32.4 29.3 26.0 30.3 30.4 30.8
100 35.7 42.7 36.9 36.7 35.0 32.4 35.5 35.7 36.5
200 39.4 43.3 40.8 40.7 39.3 37.4 40.0 40.1 40.5

AR(1) -0.8 50 26.3 57.8 22.6 28.2 4.2 3.3 4.5 4.8 25.8
100 30.6 48.2 27.6 28.8 17.7 15.3 18.7 19.0 32.4
200 37.8 46.7 35.3 35.4 33.1 30.7 33.9 33.9 39.1

-0.5 50 29.3 56.6 27.4 28.2 17.7 15.5 18.5 19.1 26.8
100 33.1 48.4 31.4 31.7 28.9 26.9 29.5 29.6 33.2
200 39.8 48.6 38.4 38.2 37.8 35.5 38.5 38.5 40.0

0.5 50 4.5 16.0 18.1 16.7 8.0 7.0 8.6 9.7 11.8
100 17.3 29.5 33.2 32.7 27.5 25.2 28.4 28.7 30.1
200 28.3 36.2 39.0 38.8 35.6 33.6 36.7 36.8 37.8

0.8 50 0.8 7.7 20.8 20.1 6.8 6.1 7.3 8.5 14.7
100 4.9 12.4 27.1 26.6 18.2 16.6 19.1 20.1 23.6
200 16.4 24.1 34.6 34.4 29.3 27.2 30.3 30.9 32.8

MA(1) 0.8 50 5.3 24.7 18.6 17.3 4.9 4.4 5.2 5.9 10.6
100 8.6 29.2 26.4 25.0 13.0 12.0 13.5 14.2 20.5
200 17.1 36.8 33.4 32.1 23.3 21.8 24.1 24.7 30.2

0.5 50 9.1 24.3 17.7 16.5 8.3 7.3 9.0 9.8 11.9
100 16.9 33.6 30.5 29.5 22.9 21.2 23.6 24.3 27.3
200 25.6 36.9 35.4 34.6 30.4 28.5 31.4 31.9 33.9

-0.5 50 38.7 72.5 41.4 43.4 28.4 27.0 28.8 29.0 40.2
100 36.7 62.1 38.8 39.1 30.3 28.9 30.7 30.7 40.1
200 43.9 59.6 43.4 43.2 39.1 37.1 39.8 39.7 45.0

-0.8 50 57.0 91.7 61.7 69.7 45.9 45.4 46.1 46.3 64.3
100 40.6 83.7 45.1 52.8 26.9 26.1 27.1 27.2 55.4
200 40.9 75.3 40.9 46.9 23.9 22.5 24.6 24.6 54.6
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S.1 Contents

Section S.1 of this supplement contains mathematical proof of Propositions 1. Section S.2
contains additional Monte Carlo results relating to the trend case.

S.2 Proof of Proposition 1

As we base our bootstrap sample exactly in the same way as in Smeekes (2012), we have in-
variance principle for the bootstrap errors e∗t :

T−1/2

bTrc∑
t=1

e∗t ⇒p σW (r), (S.1)

and the bootstrap sample y∗t ,
T−1/2y∗bTrc ⇒p σψ(1)W (r), (S.2)

where ψ(L) = 1 +
∑∞

j=1 ψjz
j is the inverse of φ(L) (see proof of Theorem 2 of Smeekes (2012),

p. 888). Note that Smeekes (2012) considered a weaker assumption about errors (assuming
infinitely increasing lag order).
Therefore, as in the proof of Jansson and Nielsen (2012), let d̂∗t =
φ̂∗(1)−1diag(1, 1/

√
T )φ̂∗(L)dt, ŷ∗t = σ̂−1∗φ̂∗(L)y∗t . Then, the test bootstrap test statistic

LR∗ = maxc̄≤0 F (c̄, X̂∗), where X̂∗ = (Ŝ∗, Ĥ∗, Â∗, B̂∗),

Ŝ∗ = σ̂−1∗T−1

T∑
t=2

ŷ∗t−1∆ŷ∗t ⇒p

∫ 1

0

W (r)dW (r) =: S,

Ĥ∗ = σ̂−2∗T−2

T∑
t=2

ŷ2∗
t−1 ⇒p

∫ 1

0

W (r)2dr =: H,

Â∗ = (Â∗(0), Â∗(1), Â∗(2)), B̂∗ = (B̂∗(0), B̂∗(1), B̂∗(2)),

Â∗(0) =
T∑
t=1

∆d̂t∆ŷ
∗
t ⇒p

(
Y

W (1)

)
=: A(0),

Â∗(1) =
T∑
t=1

(∆d̂tŷ
∗
t−1 + d̂t−1∆ŷ∗t )⇒p

(
0

W (1)

)
=: A(1),

Â∗(2) =
T∑
t=1

d̂t−1ŷ
∗
t−1 ⇒p

(
0∫ 1

0
rW (r)dr

)
=: A(2),

B̂∗(0) =
T∑
t=1

∆d̂t∆d̂
′∗
t ⇒p

(
K 0

0 1

)
=: B(0),

B̂∗(1) =
T∑
t=1

(∆d̂td̂
′∗
t−1 + d̂t−1∆d̂′∗t )⇒p

(
0 0

0 1

)
=: B(1),

B̂∗(2) =
T∑
t=1

d̂t−1d̂
′∗
t−1 ⇒p

(
0 0

0 1/3

)
=: B(2),
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where limiting results follow from (S.1) and (S.2). As a result, we have X̂∗ ⇒p X =
(S,H,A,B).
The function F (c̄, x), x = (s, h, a, b) can be written as

F (c̄, x) = c̄s− 1

2
c̄h+

1

2
N(c̄, a)′D(c̄, b)−1N(c̄, a)− 1

2
N(0, a)′D(0, b)−1N(0, a),

N(c̄, a) = a(0)− c̄a(1) + c̄2a(2), D(c̄, b) = b(0)− c̄b(1) + c̄2b(2),

therefore F (c̄, X̂∗) ⇒p F (c̄,X ) = Λτ (c̄) for every c̄ ≤ 0. The convergence result LR∗,τ =

maxc̄≤0 F (c̄, X̂∗)⇒p maxc̄≤0 F (c̄,X ) follows from the same lines as in the proof in Jansson and
Nielsen (2012).

S.3 Additional Monte Carlo Results

This section contains additional Monte Carlo results relating to the trend case. Tables S.1-S.2
give complementary results to those given in Tables 1-2 respectively. The Monte Carlo DGP
and set-up of these experiments were otherwise exactly as detailed in Section 4.
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Table S.1. Finite sample size (trend case) – c = 0

φ/θ T LR1 LR2 LR∗
1 LR∗

2 MZ∗
ρ MZ∗

t MSB∗ MP ∗
t ADF ∗

IID 0 50 2.8 6.8 3.3 3.3 3.4 3.6 3.3 3.4 3.1
100 3.0 5.1 3.3 3.3 3.2 3.3 3.2 3.2 3.2
200 3.2 4.2 3.4 3.3 3.4 3.4 3.4 3.4 3.4

AR(1) -0.8 50 2.8 21.6 3.8 6.0 0.1 0.1 0.2 0.2 2.5
100 2.7 10.2 2.9 3.4 0.4 0.4 0.4 0.4 2.6
200 3.2 7.0 3.2 3.2 1.6 1.4 1.6 1.7 3.1

-0.5 50 3.1 17.2 4.9 5.5 1.8 1.7 1.8 1.8 3.7
100 3.1 9.5 3.6 3.6 2.2 2.2 2.2 2.2 3.2
200 3.2 6.0 3.3 3.3 3.1 3.1 3.0 3.0 3.3

0.5 50 0.0 0.6 1.6 1.3 0.6 0.7 0.5 0.4 0.7
100 0.4 3.0 3.3 3.4 2.8 2.9 2.7 2.6 3.0
200 1.4 3.2 3.4 3.4 3.2 3.2 3.1 3.2 3.2

0.8 50 0.0 0.2 1.9 1.7 1.0 1.2 0.9 0.7 2.7
100 0.0 0.4 3.0 3.0 2.6 2.7 2.4 2.4 3.3
200 0.3 1.1 3.7 3.7 3.5 3.5 3.5 3.4 3.5

MA(1) 0.8 50 0.1 2.5 2.0 2.1 0.3 0.3 0.3 0.2 0.5
100 0.2 3.8 2.7 2.9 0.6 0.6 0.6 0.7 1.1
200 0.3 4.5 3.1 2.8 1.1 1.1 1.1 1.1 1.6

0.5 50 0.2 1.9 1.2 1.2 0.4 0.5 0.3 0.3 0.4
100 0.4 3.9 2.8 2.8 1.6 1.7 1.7 1.7 2.1
200 1.1 3.8 2.7 2.6 2.2 2.2 2.2 2.2 2.3

-0.5 50 11.2 35.7 15.3 16.5 9.5 9.5 9.6 9.5 12.5
100 5.9 20.9 8.2 8.2 4.5 4.5 4.5 4.5 6.2
200 4.3 12.4 5.5 5.2 3.7 3.6 3.7 3.8 4.9

-0.8 50 36.1 76.4 44.7 48.2 28.8 28.7 28.9 28.9 37.6
100 19.0 55.7 24.9 25.5 11.5 11.4 11.5 11.6 19.4
200 9.1 35.0 12.8 11.5 3.0 2.9 3.1 3.1 9.0
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Table S.2. Finite sample power (trend case) – c = 13.5

φ/θ T LR1 LR2 LR∗
1 LR∗

2 MZ∗
ρ MZ∗

t MSB∗ MP ∗
t ADF ∗

IID 0 50 30.8 56.8 35.1 35.4 33.6 33.1 33.6 33.7 32.7
100 33.6 48.5 36.2 36.2 34.8 34.2 35.2 35.3 35.1
200 36.3 46.2 38.3 38.2 36.9 36.5 37.3 37.5 37.6

AR(1) -0.8 50 22.3 82.8 29.8 45.2 0.8 0.7 0.8 0.9 24.9
100 26.6 64.9 29.0 33.9 4.7 4.4 4.9 4.9 29.4
200 32.5 54.1 33.0 34.0 19.6 19.0 20.1 20.2 34.1

-0.5 50 23.7 76.1 34.3 39.7 11.9 11.6 12.3 12.4 28.1
100 27.0 60.1 31.0 32.1 22.1 21.3 22.7 22.9 30.1
200 33.9 53.4 36.0 36.1 32.4 31.8 32.7 32.8 35.5

0.5 50 0.6 4.1 2.8 2.5 1.1 1.2 1.2 1.2 1.4
100 4.2 23.2 21.9 21.5 17.0 16.8 17.0 17.0 18.2
200 18.8 34.6 33.4 33.2 30.3 29.8 30.6 31.0 31.9

0.8 50 0.0 1.8 7.0 6.5 2.1 2.1 2.0 1.8 4.6
100 0.4 5.8 16.2 16.4 11.6 11.7 11.7 11.7 14.2
200 3.9 12.3 23.2 23.3 20.2 19.8 20.4 20.8 22.1

MA(1) 0.8 50 1.3 18.2 6.6 7.4 1.8 1.6 1.8 1.9 2.2
100 3.0 30.1 16.1 17.5 6.7 6.5 6.8 7.0 10.3
200 6.3 37.2 22.8 23.1 12.8 12.6 13.0 13.1 17.5

0.5 50 3.8 15.5 6.1 6.0 4.5 4.2 4.7 4.7 4.2
100 6.4 32.6 20.2 20.1 13.3 13.0 13.6 13.5 15.8
200 15.5 37.2 27.7 27.2 23.5 23.1 23.8 23.9 25.5

-0.5 50 43.2 89.9 54.9 61.6 37.1 36.8 37.1 37.3 48.5
100 31.9 77.2 42.4 44.2 26.4 25.8 26.4 26.5 38.3
200 33.4 67.9 40.4 40.1 29.9 29.3 30.2 30.4 38.9

-0.8 50 75.2 98.9 82.1 89.9 68.2 68.0 68.2 68.2 78.9
100 53.8 97.0 63.0 73.4 43.5 43.4 43.5 43.4 62.4
200 37.7 91.5 49.0 55.2 21.6 21.2 21.9 21.9 49.8
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