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Abstract

In this paper, we propose constructing confidence sets for a break date in cointegrating
regressions by inverting a test for the break location, which is obtained by maximizing
the weighted average of power. It is found that the limiting distribution of the test
depends on the number of I(1) regressors whose coefficients sustain structural change
and the number of I(1) regressors whose coefficients are fixed throughout the sample.
By Monte Carlo simulations, we then show that compared with a confidence interval
developed by using the existing method based on the limiting distribution of the break
point estimator under the assumption of the shrinking shift, the confidence set proposed
in the present paper has a more accurate coverage rate, while the length of the confidence
set is comparable. By using the method developed in this paper, we then investigate
the cointegrating regressions of Russian macroeconomic variables with oil prices with a
break.
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1. Introduction

This paper proposes constructing a confidence set for the change point in cointegrating re-

gressions. Cointegration has long been an important concept for investigating the long-run

relationships among macroeconomic variables.2 To capture the long-run relationship, data

over relatively long time-frames are often used in such an investigation. In this case, we should

take into account that the economic structure may change during the sample period. For

example, Campos, Ericsson, and Hendry (1996) investigate the effect of structural change on

cointegration tests and Gregory and Hansen (1996a, b) propose tests for the null hypothesis

of no cointegration that are robust to the existence of structural change, while tests for the

null hypothesis of cointegration with a structural break are proposed by Carrion-i-Silvestre

and Sansó (2006) and Arai and Kurozumi (2007). On the contrary, tests for structural change

in the framework of cointegrating regressions have been proposed by Bai, Lumsdaine, and

Stock (1998, BLS hereafter) and Kejriwal and Perron (2010). By using the tests presented in

the literature in addition to the careful inspection of original data and economic events, we

may find cointegrating relations with structural change. In this case, a statistical inference

about the change point can be made by using the method proposed by BLS in the case of a

single break, while multiple breaks were investigated by Kejriwal and Perron (2008a).

In the case of regressions using stationary variables, the break point is estimated by min-

imizing the sum of the squared residuals or by using the quasi-maximum likelihood method,

while the confidence interval is constructed by using the limiting distribution of the break

point estimator, as suggested by Bai (1997) and Bai and Perron (1998).3 In this case, the

crucial assumption made for the construction of the confidence interval is that the magnitude

of the structural break shrinks to 0 at a rate slower than 1/
√
T , as also assumed in BLS

and Kejriwal and Perron (2008a). However, as demonstrated by Elliott and Müller (2007)

and Chang and Perron (2015), a confidence interval based on the limiting distribution of the

break point estimator tends to be too liberal when the magnitude of the break is not so large.

Instead of using the limiting distribution of the change point estimator, Elliott and Müller

2Recently we can find a lot of work on large-dimensional VAR and/or Bayesian VAR methods but we focus
on classical cointegration models using frequentist methods in this paper.

3Change point estimators have been investigated in the statistical and econometric literature. See, for
example, Csörgő and Horváth (1997), Perron (2006) and Aue and Horváth (2013) among others.
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(2007) propose constructing a confidence interval by inverting the locally best invariant test

for the break location, which helps control the coverage rate.4 However, the drawback of

their method, as pointed out by Chang and Perron (2015), is that the confidence interval

tends to be too wide. Indeed, it covers most of the sample period in some cases, thereby

offering no useful information in practice. To overcome this drawback, Yamamoto (2016)

pays attention to the estimation of the long-run variance for the construction of the test

for the break location and proposes estimating it by taking the estimated break point into

account, while Kurozumi and Yamamoto (2015) consider a similar method to Elliott and

Müller (2007) but propose inverting the sup-type, average-type, and exponential-type tests

for the break location, which can be obtained by maximizing the average power of a test.

By Monte Carlo simulations, it is shown that these methods can better control the coverage

rate and that the length of the confidence set becomes close to or smaller than that based

on Bai (1997). On the contrary, Eo and Morley (2015) investigate a confidence set based

on the likelihood ratio, while Harvey and Leybourne (2015) propose constructing a confi-

dence set for the date of a break in level and trend without stochastic regressors using the

LBI test. Their method is valid for both I(0) and I(1) processes. Further, Kurozumi (2016)

extends the method of Kurozumi and Yamamoto (2015) to linear regression models with

non-homogeneous regressors, particularly with a linear trend.

As in the above case of stationary regressions, controlling the coverage rate of the confi-

dence interval of the break date in the case of cointegrating regressions may be difficult based

on the methods of BLS and Kejriwal and Perron (2008a). Indeed, the simulation results

reported in these papers are not necessarily satisfactory. Therefore, in this paper, we propose

constructing a confidence set by inverting the test for the break location in cointegrating

regressions. In this case, while the basic structure of the test is the same as in the case of

regressions with stationary regressors, the limiting distribution becomes different. We derive

the asymptotic distribution of the test depending on whether a linear trend is included in

the regressions and/or the coefficient associated with the I(1) regressors sustain a structural

change. As in the case of stationary regressions, the critical values depend on the location of

the break fraction under the null hypothesis and it is inconvenient to tabulate them for all

4The duality between confidence regions and tests is a well-known property in the statistical literature.
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the permissible break fractions in practical analysis. Instead, as in Kurozumi and Yamamoto

(2015), we conduct response surface regressions and propose obtaining the critical values of

the test for the break location in a simple formula. By Monte Carlo simulations, we show

that our method can control the coverage rate of the confidence set better than BLS, while

the size of the confidence set based on our method is comparable to that of BLS.

The rest of the paper is organized as follows. Section 2 introduces the model and as-

sumptions. We separately consider models for whether a linear trend is included in the

cointegrating regressions and/or the coefficients of the I(1) regressors change after the break

point. In Section 3, we propose constructing the confidence set by inverting the test for the

break location. The finite sample property of our method is investigated by Monte Carlo

simulations in Section 4, and we apply the method developed in this paper to a Russian eco-

nomic analysis in Section 5. Section 6 offers concluding remarks. The mathematical proofs

are relegated to the supplementary on-line appendix A.

2. Model and Assumptions

Let us consider the following linear model:

yt = w′b,tβb + wb,t(λ0)′δb + w′f,tβf + et (1)

for t = 1, · · · , T , where wb,t, wb,t(λ0), and wf,t are pb-, pb-, and pf -dimensional regressors,

respectively, wb,t(λ0) = 1(t > [λ0T ])wb,t with 1(·) being an indicator function, λ0 is a true

break fraction, [a] denotes the largest integer less than a, et is an error term, and βb, δb, and

βf are pb-, pb-, and pf -dimensional unknown coefficients, respectively. Since this paper aims

to construct a confidence set for the break date, we assume that a one-time structural change

occurred in the sample period and the true break date is denoted as T0 = [λ0T ]. Note that

the coefficient associated with wb,t sustains a structural change from βb to βb + δb, while βf

is fixed throughout the sample period.

Since we consider a cointegrating regression model, the regressors wb,t and/or wf,t include

I(1) variables, which are given by

zb,t = zb,t−1 + uzb,t

zf,t = zf,t−1 + uzf,t,
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where zb,t and zf,t are pzb - and pzf -dimensional, respectively. In the following analysis, we

mainly proceed without a drift in the I(1) variables even when wb,t includes a linear trend.

As discussed in Remark 2, the main result in regressions with the I(1) variables with a drift

remains the same by slightly modifying the test statistics in the next section.

In general, the error terms uzb,t and uzf,t are correlated with the regression error et in (1) and

this correlation will become a nuisance parameter in our test. To eliminate the correlation, we

include as regressors the leads-and-lags of the first differences of the I(1) variables in model

(1), as suggested by Phillips and Loretan (1991), Saikkonen (1991), and Stock and Watson

(1993). Such a model becomes

yt = w′b,tβb + wb,t(λ0)′δb + w′f,tβf +
l∑

j=−l
π′b,j∆zb,t−j +

l∑
j=−l

π′f,j∆zf,t−j + ut, (2)

where ∆ denotes the first differencing operator and both the leads-and-lags lengths are l for

notational convenience, but they can be different as in, for example, Hayakawa and Kurozumi

(2008) and Choi and Kurozumi (2012). In the following, we assume that ut are uncorrelated

with uzb,t−j and uzf,t−j for all j.

Remark 1 In general, the leads-and-lags lengths are infinite and thus if we truncate them

at some point l, then the error term ut includes an additional noise caused by the truncation.

However, this noise can be negligible asymptotically under additional assumptions, as proven

by Saikkonen (1991), Arai and Kurozumi (2007), and Kejriwal and Perron (2008b) among

others. We thus consider the finite leads-and-lags as in (2) only because we would like to

avoid complicating the proof further; the results obtained in the paper also hold in the general

infinite leads-and-lags case. Some examples of the case where the exact finite-order leads-

and-lags are when the I(1) regressors are independent of the regression error et, or when the

error terms, et, u
z
b,t, and uzf,t, are expressed as the finite order VAR model. We also note

that in the general case of the infinite order leads-and-lags, the truncation order l should go

to infinity as T → ∞. For example, when the error term is a finite-order ARMA process, l

is allowed to increase at a logarithmic rate and thus it can be chosen by usual information

criteria such as the AIC and BIC. Details are discussed in the on-line appendix (see also

Kejriwal and Perron, 2008b, in the case of usual cointegrating regressions).
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For notational convenience, we bundle up the additional stationary regressors ∆zb,t−j

and ∆zf,t−j and denote them as a pxf -dimensional vector xf,t. Since xf,t consists of the first

differences of the I(1) regressors, we assume E[xf,t] = 0 throughout the paper. In addition,

because the coefficient associated with xf,t is fixed throughout the sample, we absorb xf,t

into wf,t and then the model can be simply expressed as

yt = w′b,tβb + wb,t(λ0)′δb + w′f,tβf + ut (3)

= wt(λ0)′β + ut,

where wf,t includes xf,t and wt(λ0) = [w′b,t, wb,t(λ0)′, w′f,t]
′. Model (3) can be expressed in

vector form as

y = Wbβb +Wb(λ0)δb +Wfβf + u

= W (λ0)β + u, (4)

where y = [y1, · · · , yT ]′, Wb = [wb,1, · · · , wb,T ]′, Wb(λ0) = [0, · · · , 0, wb,T0+1, · · · , wb,T ]′, Wf =

[wf,1, · · · , wf,T ]′, W (λ0) = [Wb,Wb(λ0),Wf ], and u = [u1, · · · , uT ]′.

As a specification of the regressors wb,t and wf,t, we consider the following commonly

used models in practical analysis:

Model I-a : A constant and the I(1) regressors are included in the cointegrating relation

and all the coefficients except for those associated with the first differences of the I(1)

regressors sustain a break. That is, wb,t = [1, z′b,t]
′, wf,t = xf,t, βb = [βb,c, β

′
b,z]
′,

δb = [δb,c, δ
′
b,z]
′, and βf = βf,x:

yt = βb,c + z′b,tβb,z + 1(t > [λ0T ])
(
δb,c + z′b,tδb,z

)
+ x′f,tβf,x + ut.

Model I-b : A constant and the I(1) regressors are included in the cointegrating relation and

only a constant term sustains a break. That is, wb,t = 1, wf,t = [z′f,t, x
′
f,t]
′, βb = βb,c,

δb = δb,c, and βf = [β′f,z, β
′
f,x]′:

yt = βb,c + 1(t > [λ0T ])δb,c + z′f,tβf,z + x′f,tβf,x + ut.
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Model I-c : A constant and the I(1) regressors are included in the cointegrating relation

and some of the coefficients associated with the I(1) regressors are fixed throughout the

sample. That is, wb,t = [1, z′b,t]
′, wf,t = [z′f,t, x

′
f,t]
′, βb = [βb,c, β

′
b,z]
′, δb = [δb,c, δ

′
b,z]
′, and

βf = [β′f,z, β
′
f,x]′:

yt = βb,c + z′b,tβb,z + 1(t > [λ0T ])
(
δb,c + z′b,tδb,z

)
+ z′f,tβf,z + x′f,tβf,x + ut.

Model II-a : A constant, a linear trend, and the I(1) regressors are included in the coin-

tegrating relation and all the coefficients except for those associated with the first

differences of the I(1) regressors sustain a break. That is, wb,t = [1, t, z′b,t]
′, wf,t = xf,t,

βb = [βb,c, βb,τ , β
′
b,z]
′, δb = [δb,c, δb,τ , δ

′
b,z]
′, and βf = βf,x:

yt = βb,c + βb,τ t+ z′b,tβb,z + 1(t > [λ0T ])
(
δb,c + δb,τ t+ z′b,tδb,z

)
+ x′f,tβf,x + ut.

Model II-b : A constant, a linear trend, and the I(1) regressors are included in the cointe-

grating relation and only a constant term and a linear trend sustain a break. That is,

wb,t = [1, t], wf,t = [z′f,t, x
′
f,t]
′, βb = [βb,c, βb,τ ]′, δb = [δb,c, δb,τ ]′, and βf = [β′f,z, β

′
f,x]′:

yt = βb,c + βb,τ t+ 1(t > [λ0T ]) (δb,c + δb,τ t) + z′f,tβf,z + x′f,tβf,x + ut.

Model II-c : A constant, a linear trend, and the I(1) regressors are included in the cointe-

grating relation and some of the coefficients associated with the I(1) regressors are

fixed throughout the sample. That is, wb,t = [1, t, z′b,t]
′, wf,t = [z′f,t, x

′
f,t]
′, βb =

[βb,c, βb,τ , β
′
b,z]
′, δb = [δb,c, δb,τ , δ

′
b,z]
′, and βf = [β′f,z, β

′
f,x]′:

yt = βb,c + βb,τ t+ z′b,tβb,z + 1(t > [λ0T ])
(
δb,c + δb,τ t+ z′b,tδb,z

)
+ z′f,tβf,z + x′f,tβf,x + ut.

Let zu,t =
∑t

j=1 uj and zt = [z′b,t, z
′
f,t, zu,t]

′ = [z′1,t, zu,t]
′, where z1,t = [z′b,t, z

′
f,t]
′. For

model (3), we make the following assumption.

Assumption 1 (a) The following weak convergences hold:

1√
T
z[rT ] ⇒ B∗(r) uniformly over 0 ≤ r ≤ 1, (5)
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1

T

[rT ]∑
t=1

z1,tut ⇒
∫ r

0
B∗1(r)dB∗u(r)′ uniformly over 0 ≤ r ≤ 1, (6)

where B∗(r) = [B∗1(r)′, B∗u(r)]′ = [B∗b (r)′, B∗f (r)′, B∗u(r)]′ is a (pzb +pzf + 1)-dimensional Brow-

nian motion with E[B∗(s)B∗(t)′] = min(s, t) Ω = min(s, t) diag{Ω11, ωuu} for 0 ≤ s, t ≤ 1,

Ω11 > 0, ωuu > 0, and ⇒ signifies the weak convergence under Skorohod topology.

(b) xf,t is a stationary process with E[xf,t] = 0, E[xf,tut−j ] = 0 for all j, and the following

relations hold:

1

T

T∑
t=1

xf,tx
′
f,t

p−→ Σx > 0, (7)

1√
T

T∑
t=1

xf,tut = Op(1), (8)

1

T

[rT ]∑
t=1

ztx
′
t = Op(1) uniformly over 0 ≤ r ≤ 1, (9)

where
p−→ signifies convergence in probability.

Assumption 1(a) implies that the functional central limit theorem holds for the I(1)

regressors and the partial sum process based on ut. Since the leads-and-lags of the I(1)

regressors are included in model (3), ut is supposed to be uncorrelated with all the leads-

and-lags of ∆zb,t and ∆zf,t, meaning that the so-called second-order bias does not appear

in (6). The positive definiteness of Ω11 implies we do not allow for cointegration among the

I(1) regressors. The theorem derived in this paper will not hold when z1t are cointegrated.

In practice, we may have several I(1) regressors and in that case, we first have to test for

cointegration and confirm that there is no cointegrating relation among the I(1) regressors.

Assumption 1(b) requires that the innovations driving the I(1) regressors are zero-mean

stationary processes and that the well-known mild moment conditions also hold, as in (8)

and (9).

3. Confidence Set for the Break Date

In this section, we consider constructing a confidence set for the break date by inverting

the test for the location of the break point. For the unknown break point, we test for

HN : T0 = T1 vs. HA : T0 = T2 (10)
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with the significance level α, and if the null hypothesis is accepted, then we include T1 in

the confidence set; otherwise we exclude T1 from the confidence set. By conducting this test

for all the permissible break points, we obtain a confidence set for the break date with the

confidence level 1 − α. Note that testing problem (10) can be expressed by using the break

fraction as

HN : λ0 = λ1 vs. HA : λ0 = λ2 (11)

where λ1 = T1/T and λ2 = T2/T .

In this procedure, the confidence set becomes smaller as a test becomes more powerful

and, therefore, we should construct a test as powerful as possible. However, it is not difficult

to see that there exists no uniformly most powerful test for testing problem (10). Instead,

following the literature, we consider constructing a test that maximizes the weighted average

of power.

We first note that we cannot directly estimate (3) by using wb,t(λ0) because wb,t(λ0)

depends on the unknown break fraction λ0. Since the testing problem is given by (10), we

consider estimating the model under the null hypothesis and construct the test statistic. Let

wb,t(λ1) = 1(t > [λ1T ])wb,t and rt(λ0, λ1) = wb,t(λ0) − wb,t(λ1). Then, model (3) can be

expressed as

yt = w′b,tβb + wb,t(λ0)′δ + w′f,tβf + ut

= w′b,tβb + wb,t(λ1)′δ + w′f,tβf + ut + rt(λ0, λ1)′δ

= wt(λ1)′β + ut(λ0, λ1), (12)

where wt(λ1) = [w′b,t, wb,t(λ1)′, w′f,t]
′ and ut(λ0, λ1) = ut + rt(λ0, λ1)′δ. In vector form, this

becomes

y = Wbβb +Wb(λ0)δ +Wfβf + u

= Wbβb +Wb(λ1)δ +Wfβf + u+R(λ0, λ1)δ

= W (λ1)β + u(λ0, λ1), (13)

where Wb(λ1) and W (λ1) are defined similarly to Wb(λ0) and W (λ0) in (4) with λ0 replaced

by λ1, R(λ0, λ1) = Wb(λ0)−Wb(λ1), and u(λ0, λ1) = u+ R(λ0, λ1)δ. From expression (13),
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we restrict our attention to a class of tests invariant to the group of transformations given

by y → y + W (λ1)b and β → β + b, where b is a (2pb + pf )-dimensional vector. In this

case, it can be shown that there is no uniformly most powerful test even under restricted

assumptions. Rather, the power of a test typically depends on the magnitude of the break,

δ, and the location of the break under the alternative, λ2, and thus it can be expressed

as P (ϕ rejects HN |δ, λ2) where ϕ is a test for (11) with the significance level α. Following

Andrews and Ploberger (1994), Elliott and Müller (2007), and Kurozumi and Yamamoto

(2015) among others, we consider maximizing the weighted average of P (ϕ rejects HN |δ, λ2)

over δ and λ2 using some weighting functions, which is given by∫ ∫
P (ϕ rejects HN |δ, λ2) dQλ2(δ)dJ(λ2) (14)

where Qλ2(δ) and J(λ2) are non-negative measures on Rpb and (0, 1), respectively. Typically,

these weighting functions are chosen so that the asymptotic distribution of the test statistic

becomes free of the nuisance parameters. In the case of cointegrating regressions, we set

Qλ2(δ) ∼ N
(

0,
cσ2

T
Σ−1
δ

)
where Σδ =

1

T
R(λ2, λ1)′Mw1R(λ2, λ1)

with Mw1 = IT − W (λ1)(W (λ1)′W (λ1))−1W (λ1)′ and R(λ2, λ1) = Wb(λ2) − Wb(λ1) (the

choice of Q is discussed in the on-line appendix), while J(λ2) is a uniform measure on Λε =

{λ2 : ε ≤ λ2 < λ1−ε, λ1+ε < λ2 ≤ 1−ε}, in which both the end points and the neighborhood

of λ1 are excluded to avoid the explosive behavior of the test statistic. The value of ε must be

determined by a researcher. Since small values of ε cover the wide range of the alternative,

we will use ε = 0.05 in the rest of the paper. Then, in the same manner as Andrews and

Ploberger (1994), Elliott and Müller (2007), and Kurozumi and Yamamoto (2015), under the

additional assumption that {ut} is a sequence of i.i.d. normal random variables and {ut} is

independent of {wb,t} and {wf,t}, the test that maximizes the averaged power given by (14)

rejects the null hypothesis when

L̃RT (λ1) =

∫
λ2∈Λε

(1 + c)−pβ/2 exp

{
c

2(1 + c)σ2

y′Mw1R(λ2, λ1)
(
R(λ2, λ1)′Mw1R(λ2, λ1)

)−1
R(λ2, λ1)′Mw1y

}
dλ2 > a

for some value a. Since the localizing parameter c controls the weight of the magnitude of

the break, the test can better detect a small break when c is close to zero whereas a test with
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larger values of c is suitable for a large break. The choice of c will be discussed later. Note

that the assumption of normality is used only for the derivation of the test statistic, and we

do not assume normality in the remainder of the paper.

We first derive the limiting distribution of L̃RT (λ1) for each model. Let us partition the

long-run variance Ω11 in Assumption 1(a) into Ωij for i, j = b and f . Define

Bb(r) = Ω
−1/2
bb B∗b (r), Bf (r) = Ω

−1/2
ff B∗f (r), Bu(r) = ω−1/2

uu B∗u(r),

Bf ·b(r) = Ω
−1/2
f ·b

(
B∗f (r)− ΩfbΩ

−1
bb B

∗
b (r)

)
,

where Ωf ·b = Ωff −ΩfbΩ
−1
bb Ωbf . Note that they are all standard Brownian motions and that

Bb(r), Bf ·b(r), and Bu(r) are independent of each other.

Theorem 1 Suppose Assumption 1 holds. Then, under the null hypothesis HN , we have

L̃RT ⇒ L̃R(λ1)

≡
∫
λ2∈Λε

(1 + c)−pβ/2 exp

(
c

2(1 + c)
G(λ1, λ2)′H(λ1, λ2)−1G(λ1, λ2)

)
dλ2,

where (a) for Models I-a and II-a,

G(λ1, λ2) =
∫ λ1
λ2
B̃b(r)dBu(r)−

∫ λ1
λ2
B̃b(r)B̃b(r)

′dr
(∫ λ1

0 B̃b(r)B̃b(r)
′dr
)−1 ∫ λ1

0 B̃b(r)dBu(r) : λ2 < λ1

−
∫ λ2
λ1
B̃b(r)dBu(r)−

∫ λ2
λ1
B̃b(r)B̃b(r)

′dr
(∫ 1

λ1
B̃b(r)B̃b(r)

′dr
)−1 ∫ 1

λ1
B̃b(r)dBu(r) : λ2 > λ1

H(λ1, λ2) =
∫ λ1
λ2
B̃b(r)B̃b(r)

′dr −
∫ λ1
λ2
B̃b(r)B̃b(r)

′dr
(∫ λ1

0 B̃b(r)B̃b(r)
′dr
)−1 ∫ λ1

λ2
B̃b(r)B̃b(r)dr : λ2 < λ1∫ λ2

λ1
B̃b(r)B̃b(r)

′dr −
∫ λ2
λ1
B̃b(r)B̃b(r)

′dr
(∫ 1

λ1
B̃b(r)B̃b(r)

′dr
)−1 ∫ λ2

λ1
B̃b(r)B̃b(r)dr : λ2 > λ1

with B̃b(r) = [1, Bb(r)
′]′ for Model I-a and B̃b(r) = [1, r, Bb(r)

′]′ for Model II-a,

(b) for Models I-b and II-b,

G(λ1, λ2) =

{ ∫ λ1
λ2
B̃b(r)dBu(r)− J1(λ1, λ2)′K(λ1)−1L(λ1) : λ2 < λ1

−
∫ λ2
λ1
B̃b(r)dBu(r)− J2(λ1, λ2)′K(λ1)−1L(λ1) : λ2 > λ1

H(λ1, λ2) =

{ ∫ λ1
λ2
B̃b(r)B̃b(r)

′dr − J1(λ1, λ2)′K(λ1)−1J1(λ1, λ2) : λ2 < λ1∫ λ2
λ1
B̃b(r)B̃b(r)

′dr − J2(λ1, λ2)′K(λ1)−1J2(λ1, λ2) : λ2 > λ1
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with

J1(λ1, λ2) =

[∫ λ1

λ2

B̃b(r)B̃b(r)
′dr, 0,

∫ λ1

λ2

B̃b(r)Bf (r)′dr

]
J2(λ1, λ2) =

[
0,−

∫ λ2

λ1

B̃b(r)B̃b(r)
′dr,−

∫ λ2

λ1

B̃b(r)Bf (r)′dr

]

K(λ1) =


∫ λ1

0 B̃b(r)B̃b(r)
′dr 0

∫ λ1
0 B̃b(r)Bf (r)′dr

0
∫ 1
λ1
B̃b(r)B̃b(r)

′dr
∫ 1
λ1
B̃b(r)Bf (r)′dr∫ λ1

0 Bf (r)B̃b(r)
′dr

∫ 1
λ1
Bf (r)B̃b(r)

′dr
∫ 1

0 Bf (r)Bf (r)′dr


L(λ1) =

[(∫ λ1

0
B̃b(r)dBu(r)

)′
,

(∫ 1

λ1

B̃b(r)dBu(r)

)′
,

(∫ 1

0
Bf (r)dBu(r)

)′]′
with B̃b(r) = 1 for Model I-b and B̃b(r) = [1, r]′ for Model II-b,

(c) for Models I-c and II-c, G(λ1, λ2), H(λ1, λ2), J1(λ1, λ2), J2(λ1, λ2), K(λ1), and L(λ1)

are defined as in Case (b) with Bf (r) replaced by Bf ·b(r) with B̃(r) = [1, Bb(r)
′]′ for Model

I-c and B̃(r) = [1, r, Bb(r)
′]′ for Model II-c.

Remark 2 When the I(1) regressors have a drift term, we typically consider including a

linear trend in the regressions. Because a constant and a linear trend (with a break) are

included as regressors in Models II-a to II-c, the test statistic L̃RT (λ1) is invariant to the

drift term of the I(1) regressors if we replace ∆zb,t−j and ∆zf,t−j in xf,t with the demeaned

versions, ∆zb,t−j−∆zb and zf,t−j−∆zf , respectively, to ensure that E[xf,t] = 0. In this case,

we obtain the same result as given in Theorem 1. Note that when the I(1) regressors have a

drift term in Models I-a to I-c, the limiting distributions would be different from those given in

Theorem 1, but we do not pursue these cases in this paper because it is natural and practically

more relevant to include a linear trend as in Models II-a to II-c when the I(1) variables have

a drift. We also note that the drift term of the I(1) regressors is allowed to sustain structural

change, because it can be absorbed into the linear trend term (with a break). In this case, the

demeaned versions of the I(1) regressors may be constructed using the estimated break date,

as in the estimation of ωuu explained at the end of this section.

As we can see from Theorem 1, the limiting distributions become simpler for the models

without the I(1) regressors with fixed coefficients because in those models, the regressor wb,t,
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whose coefficients sustain structural change, becomes asymptotically orthogonal to the other

regressors wf,t with fixed coefficients. On the contrary, when the I(1) regressors are included

in wf,t, wb,t is correlated with wf,t even in the limit and thus the limiting distribution of the

test statistic depends on pzf , the number of I(1) regressors with fixed coefficients.

Note that the limiting distribution depends on the localizing parameter c and we have to

deal with c to implement the test. Following Andrews and Ploberger (1994), we consider the

average-type test for which the weight is put on a small change (c→ 0) and the exponential-

type test for which the large magnitude of a break is taken into account (c→∞). We can also

consider the sup-type test following Andrews (1993), although it cannot be directly derived

by the expression in Theorem 1. Then, their limiting expressions are given by

sup-LR(λ1) = sup
λ2∈Λε

G(λ1, λ2)′H(λ1, λ2)−1G(λ1, λ2), (15)

avg-LR(λ1) = lim
c→0

2

c

(
L̃R(λ1)− 1

)
=

∫
λ2∈Λε

G(λ1, λ2)′H(λ1, λ2)−1G(λ1, λ2)dλ2, (16)

exp-LR(λ) = lim
c→∞

log(1 + c)pβ/2L̃R(λ1)

= log

∫
λ2∈Λε

exp

(
1

2
G(λ1, λ2)′H(λ1, λ2)−1G(λ1, λ2)

)
dλ2. (17)

The critical values of these distributions depend on λ1 and it is inconvenient to tabulate

them for all the permissible break fractions λ1. Instead, we first calculate critical values

for λ1 ranging from 0.1 to 0.9 in increments of 0.01, for the given significance level, over

Λε = {λ2 : ε ≤ λ2 < λ1 − ε, λ1 + ε < λ2 ≤ 1− ε} with ε = 0.05, where a standard Brownian

motion is approximated by the normalized partial sums of standard normal random variables.5

Next, we conduct the response surface regression by using the obtained critical values for each

case as a function of λ1. The regression form is given by

critical value = a0 + a−1
1

`+ 1
+ a1`+ a2`

2 + a3`
3, (18)

5As ε = 0.05, λ1 may take values between 0.05 and 0.1 or 0.9 and 0.95. In these cases, the integral in the
limiting expression is taken over the one-sided region ({λ2 : λ1 + ε < λ2 ≤ 1 − ε} or {λ2 : ε ≤ λ2 ≤ λ1 − ε})
when λ1 is located near the end points, ε ≤ λ1 ≤ 2ε or 1 − 2ε ≤ λ1 ≤ 1 − ε, whereas the range of the
integral is two-sided ({λ2 : ε ≤ λ2 < λ1 − ε, λ1 + ε < λ2 ≤ ε}) when λ1 is located far from the end points,
2ε < λ1 < 1 − 2ε. As a result, the response surface regression becomes complicated in this case, as shown
by Kurozumi and Yamamoto (2015). To simplify our procedure as far as possible, we restrict the permissible
values of the break fraction λ1 to range from 0.1 to 0.9.
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where ` = |λ1 − 0.5|. The obtained coefficients are summarized Tables B.1–B.6 in the on-

line appendix.6 Note that the regression coefficients a0 to a3 depend on the test statistics,

significance level, number of I(1) regressors whose coefficients sustain a break, and number

of I(1) regressors whose coefficients are fixed throughout the sample period.

From the limiting expressions (15)–(17), the corresponding finite sample versions, which

can be implemented in practical analysis, are given by

sup-LRT (T1) = max
T2∈Tε

FT2(T1), (19)

avg-LRT (T1) =
1

T ∗

∑
T2∈Tε

FT2(T1), (20)

exp-LRT (T1) = log

 1

T ∗

∑
T2∈Tε

exp

(
1

2
FT2(T1)

) , (21)

where Tε = {T2 : εT ≤ T2 < T1 − εT, T1 + εT < T2 ≤ (1 − ε)T}, T ∗ is the number of

T2 included in Tε, and FT2(T1) is the test statistic for the simple null hypothesis of T0 = T1

against the simple alternative of T0 = T2, which is given by

FT2(T1) =


(∑T1

t=T2+1wb,tût

)′ (
ω̃uuĤ

)−1 (∑T1
t=T2+1wb,tût

)
: T2 < T1(∑T2

t=T1+1wb,tût

)′ (
ω̃uuĤ

)−1 (∑T2
t=T1+1wb,tût

)
: T1 < TT

,

where ût are the regression residuals of yt on wb,t, wb,t(λ1), and wf,t,

Ĥ =
T∑
t=1

r̂t(λ2, λ)r̂t(λ2, λ1)′

with r̂t being the regression residuals of rt(λ2, λ1) on wt(λ1), and ω̃uu is a consistent estimator

of ωuu. Note that we require ω̃uu to be consistent under both the null and the alternative

and thus, following Yamamoto (2016), we use the following nonparametric estimator:

ω̃uu = γ̃(0) + 2

T∑
j=1

k(j,m)γ̃(j), γ̃(j) =
1

T

T∑
t=j+1

ũtũt−j ,

where ũt are the regression residuals of yt on wb,t, wb,t(λ1), wf,t, and 1(|T1− T̂b| > pb)wb,t(λ̂b)

with T̂b (λ̂b) being the break (fraction) estimator by minimizing the sum of the squared

6In the response surface regressions, the maximum relative error, (the fitted value −
the obtained critical value)/the obtained critical value, among all the regressions was 0.028.
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residuals, as considered by Kejriwal and Perron (2008a), and k(j,m) is a kernel function such

as the Bartlett and quadratic spectral (QS) kernel, as often used in practical analysis, with

m being the bandwidth parameter. Note that wb,t(λ̂b) is multiplied by the indicator function

1(|T1 − T̂b| > pb) with pb being the dimension of wb(t) (the regressors whose coefficients

sustain structural change) to avoid the case where T̂b is too close to T1, so that the sample

second moment of the regressors can be invertible in finite samples. See Yamamoto (2016)

for details.

4. Finite Sample Property

In this section, we investigate the finite sample properties of the confidence sets constructed

by inverting the three test statistics (19)–(21). We consider the case of only one I(1) regressor,

where the data generating process is given by

Model I-a: yt = 1 + zt + 1(t > [λ0T ])(δb,c + δb,zzt) + ut,

Model I-b: yt = 1 + 1(t > [λ0T ])δb,c + zt + ut,

Model II-a: yt = 1 + 3
t

T
+ zt + 1(t > [λ0T ])

(
δb,c + 3δb,τ

t

T
+ δb,zzt

)
+ ut,

Model II-b: yt = 1 + 3
t

T
+ 1(t > [λ0T ])

(
δb,c + 3δb,τ

t

T

)
+ zt + ut.

The I(1) regressor zt and the error term ut are generated by

zt = zt−1 + uzt , uzt = φzu
z
t−1 + ez,t,

ut = φuut−1 + eu,t,

where

[
eu,t
ez,t

]
∼ i.i.d.N(0,Σ) with Σ =

[
1 σzu
σzu 1

]
.

The sample size T is 100 and 300, and we consider the case where a one-time break occurs

in the middle of the sample period, λ0 = 0.5. We set the magnitude of the break to be

δb,c = d/T 1/4, δb,τ = d/T 1/4, and δb,z = d/T 3/4 for d = 4, 8, 12, and 16, respectively. As a

standard case, we consider the case with no serial correlation in uzt and ut (φz = φu = 0), no

endogeneity (σzu = 0), and the leads-and-lags length given by l = 0 (DGP1); we set φz = 0.5,

φu = 0, and σzu = 0 with l = 0 to see the effect of the serial correlation in uz,t (DGP2), while
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DGP3 allows for serial correlation in the regression errors ut by setting φz = 0, φu = 0.5,

σzu = 0, and l = 0. The effect of the endogeneity is investigated in DGP4 with φz = φu = 0,

σzu = 0.5, where the leads-and-lags order l is selected by the BIC with the maximum lag

order set to [8(T/100)1/4]. Finally, DGP5 corresponds to the most general case in which

serial correlation and endogeneity are allowed with φz = φu = 0.5, σzu = 0.5, and l selected

by the BIC.7 The long-run variance ωuu is estimated using the QS kernel with the bandwidth

selected by the automatic selection rule suggested by Andrews (1991). The confidence level

is 0.95, the number of replications is 5000, and all the simulations are conducted by using

the GAUSS matrix language.

Table 1 shows the coverage rates and lengths of the confidence sets for Model I-a. The

column “BLS” is the result based on the confidence interval obtained by using the method

proposed by BLS, while the columns “sup,” “avg,” and “exp” correspond to the confidence

sets obtained by inverting the sup-type, average-type, and exponential-type tests, respec-

tively. In DGP1, the coverage rate of BLS for T = 100 is much smaller than the nominal

rate of 0.95 when the magnitude of the break is small, while it becomes close to 0.95 when a

large structural change occurs. Similarly, the new methods do display some under-coverage

for small d, albeit less severe than for BLS. Regarding the length of the confidence set, our

three methods tend to construct larger confidence sets than BLS for small d, which may be

due to more liberal coverage rate of BLS, while they tend be as small as BLS for large d. As a

whole, the difference in the sizes of the confidence sets is relatively minor when the empirical

coverage rates are close to 0.95.

From panel DGP2, we can see that the effects of serial correlation in the I(1) regressor on

the coverage rates are very minor; they are close to those in DGP1. By contrast, positive serial

correlation reduces the lengths of the coverage rates because the variation in the regressors

becomes larger than the variance of ut and the relative weight of the noise in the regression

becomes smaller, thereby allowing us to estimate the model more efficiently.

On the contrary, serial correlation in the error term does affect the coverage rates, as

shown in panel DGP3. For all the methods, the coverage rates become more liberal in this

7We also conducted simulations with a fixed leads-and-lags length using l = [4(T/100)1/4]. The relative
performance in this case is similar to the case with l selected by the BIC.
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case. However, the coverage rate of the sup-type test recovers to the nominal rate as soon as

the magnitude of the break becomes larger. In the case of positive serial correlation in ut,

the variation of the noise in the regression becomes large and the estimation becomes less

efficient. As a result, the lengths of the confidence sets tend to be larger than those in the

standard case.

Panel DGP4 suggests that the effect of the endogeneity is relatively minor, at least if we

include the leads-and-lags by using the BIC. The coverage rates in DGP4 are close to those

in DGP1, while the sizes of the confidence sets are slightly smaller.

DGP5 allows for serial correlation and endogeneity, and the results are a mixture of DGP2

to DGP4. Again, all the methods are liberal when d = 4; however, the coverage rate of the

sup-type test becomes closest to 0.95 when d ≥ 8, while the difference in the sizes of the

confidence sets seems relatively minor.

When T = 300, all the methods perform better in terms of the coverage rates and the

lengths of the confidence sets. In general, the relative performance is preserved in this case.

The results for Model I-b, II-a, aid II-b are summarized in Tables B.7–B.9 in the on-line

appendix to save space. For Model I-b, the confidence set of BLS is liberal again when the

magnitude of the break is small, whereas it becomes too conservative for a large break. For

example, the coverage rate of BLS is 0.886 for d = 4, while it is 1.000 for d = 16 in DGP1.

By contrast, our three methods are better able to control the coverage rate, although it is

smaller than the nominal rate when d = 4 in DGP 3 and DGP5.

For Models II-a and II-b, the coverage rate of BLS becomes close to the nominal rate for

the small break, whereas it is conservative for d ≥ 8 for Model II-a and almost always 1.000

for Model II-b. On the contrary, the coverage rates of our three methods are relatively close

to the nominal rate, although the sup-type test tends to be slightly conservative in some

cases.

We also investigate the effect of the location of the true break point on the coverage rates.

We conduct the simulations for λ0 = 0.3, 0.5, and 0.7 using GDP5 and, as is seen in Tables

B.10–B.13 in the on-line appendix, the location of the break point has only a minor effect

for all the four method in Models I-a and I-b. whereas the performances in Models II-a and
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II-b are more affected by λ0 for small values of d. In these models, the coverage rates tends

to be more liberal (conservative) when the location of the break is earlier (later).

Overall, the sup-type test is the best method for controlling the coverage rate, while the

differences in the lengths of the confidence sets are minor as far as we can control the coverage

rates of the tests, although these observations are limited to our simulation settings.

5. Empirical Application

In this section, we demonstrate the performance of our confidence sets by using Russian

data. We consider the dependence of the Russian economy on oil prices. This positive long-

run dependence originates from neoclassical theory of the capital accumulation channel, as

discussed by Esfahani, Mohaddes, and Pesaran (2014), Idrisov, Kazakova and Polbin (2015)

and Polbin and Skrobotov (2016). For example, in the Solow growth model, a part of oil

revenue is saved in the form of the accumulation of physical capital. The following model is

based on Polbin and Skrobotov (2016). This model distinguishes the dynamics of Russian

GDP, consumption, and investment from the external economic environment by using a

(univariate) cointegrating regression with structural breaks.8

First, we consider Russian quarterly real log GDP from 1999 to 2014 in constant 2003

prices (64 observations). Figure 1 illustrates two periods with different real GDP growth

rates (refer to the left axis for GDP, consumption, and investment, while the right axis

corresponds to oil prices). The first period shows recovering growth from approximately the

beginning of the sample to mid-2008 (i.e., when the global financial crisis struck). During

this period, the Russian economy grew approximately by 7% per year. This considerably

high growth rate could have been induced by the country’s economic recovery after the so-

called transformation recession (accompanied by increasing production efficiency) as well

as the considerable increase in oil prices (since 2003). After the structural break in 2008, a

significant growth rate is observed only briefly after the crisis, 2008–2009 (recovering growth);

when GDP reaches the pre-crisis level, the growth rate reduces significantly.

The long-run dependence of real GDP on oil prices can be expressed by the following

8Polbin and Skrobotov (2016) also consider the multivariate case based on the error correction model.
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simple model:

log yt = deterministic component + γ log poilt + et (22)

where yt is real output, poilt is the real oil price, and γ is the long-run price elasticity of

real output on the real oil price. If the process et is stationary, we interpret this relation as

cointegration with the long-run dependence of output on oil prices. The structural break in

mid-2008 can be induced by the reaction of the oil price dynamics as well as by the change in

the long-run growth rate of the structural component of GDP. If only the first source matters,

then there is no structural break in the deterministic component. If there is a change in the

long-run growth rate of the structural component of GDP, then we can approximate this

break as Model II-b:

log yt = βb,c + βb,τ t+ 1(t > [λ0T ]) (δb,c + δb,τ t) + γ log poilt + ut. (23)

Throughout this section, we assume that the oil price is a random walk (see, inter alia,

Alquist, Kilian, and Vigfusson, 2013). Then, as described by Polbin and Skrobotov (2016),

the deterministic component in equation (22) is the unconditional expectation of the GDP

growth rate in Russia. Therefore, if there is long-run (cointegrating) dependence of Russian

real GDP on oil prices, the long-run GDP growth rate will coincide with the long-run growth

rate of the structural component of GDP. A similar type of cointegrating relation for the

Russian economy was considered in Rautava (2013) and Kuboniwa (2014). If there is no

break, then the economy grows at a rate of βb,τ under fixed oil prices. If there is a break,

then the growth rate changes from βb,τ to βb,τ + δb,τ . As in Polbin and Skrobotov (2016),

according to neoclassical models of exogenous growth, the deterministic trends in (22) can be

interpreted as long-run growth in labor efficiency in all sectors of the economy. This long-run

growth ensures a balanced growth path of real GDP. In the Russian economy, the break in

the deterministic component (in particular, the break in trend) in (23) originates from the

end of the rapid growth period driven by the substantial reduction in the productivity gap

between domestic and foreign economies and need to ensure growth at the expense of their

own development.

We can also consider similar regressions for the real consumption and real investment

series; real consumption and/or real investment may be cointegrated with oil prices with a
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structural break in the trend function, as suggested by Figure 1 (see more discussion in Polbin

and Skrobotov, 2016).

The data used in this section are logarithms of seasonally adjusted (by X-12-ARIMA)

Russian quarterly real GDP, consumption, and investment from 1999 to 2014 in constant

2003 prices (source: Federal State Statistics Service, Russia) and real oil prices (Brent) from

1999 to 2014 (source: International Financial Statistics) deflated by seasonally adjusted CPI

in the United States (source: Federal Reserve Economic Data). We investigate the data as

follows:

1. Estimate the break date based on a regression without leads-and-lags.

2. Choose the number of leads-and-lags by the BIC (see Choi and Kurozumi, 2012).

3. Re-estimate the break date by using the selected leads-and-lags.

4. Test for the null hypothesis of cointegration with a break by using the test proposed

by Arai and Kurozumi (2007).

5. If we do not reject the null hypothesis of cointegration, then construct the confidence

set based on the leads-and-lags regression and estimated break date.

The first two steps imply that we choose the leads-and-lags under the alternative. By using

the selected leads-and-lags, we re-estimate the break date in step 3. This estimated break

date is then used for the LM-type test for the null hypothesis of cointegration with a break

proposed by Arai and Kurozumi (2007) in step 4. We construct the confidence set in the

final step if the null hypothesis of cointegration is not rejected. We note again that the real

oil price is assumed to be a random walk as supposed in the literature.

Table 2 reports the estimated break dates. For GDP and consumption, they are in

2008, whereas a structural change may have occurred in 2006 in the relationship between

investment and oil prices. By using the estimated break dates, we test for the null hypothesis

of cointegration with a break for each series where the long-run variance is estimated based

on the kernel method by using the QS kernel and data-dependent bandwidth rule proposed
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by Andrews (1991), and we cannot reject the null hypothesis.9 For completeness, we also test

for the null hypothesis of cointegration without a break as proposed by Shin (1994), and we

reject the null for GDP and investment at the 5% significance level and for consumption at the

10% significance level.10 These results suggest a cointegrating relationship between Russian

macroeconomic variables and oil prices because it is known that if series are cointegrated with

a break, we do reject the null hypothesis of cointegration if we use the usual test without a

break (Shin’s test), whereas we fail to reject the null hypothesis if we appropriately introduce

the break into the model, as in the case of unit root tests (Perron, 1989). We also checked

the existence of a break by using the BIC and modified BIC proposed by Kurozumi and

Tuvaandorj (2011) for discriminating between two models, with and without a break.11 We

find that the BIC and modified BIC provide evidence of the presence of break. From these

results, we proceed with a cointegration model with a break as given by (23).

Once evidence of cointegration with a break is observed, we next construct confidence

sets, as summarized in Figure 2. Note that our confidence sets provide additional evidence

of the presence of a break because if the confidence set is empty, then we can conclude that

there is no break. We select the different lengths of leads-and-lags by using the BIC, which

are (leads, lags)=(0,0) for the regression with GDP, (1,5) for that with consumption, and

(0,0) for that with investment. In the figure, the bold vertical line shows the estimated break

date, which is also reported in Table 2. For the cointegrating regression with GDP reported

in Figure 2(i), the sup-type and average-type tests return the same confidence sets ranging

from 2008Q1 to 2009Q1, while those based on the exponential-type test and BLS are from

2008Q2 to 2008Q4. As observed in the simulation section, the coverage rate based on the

sup-type test tends to be close to the nominal confidence level while it may be difficult to

control the coverage rate for the other three methods; in particular, the coverage rate of BLS

9Model (23) is not included in Arai and Kurozumi (2007) and we obtained asymptotic critical values for
the given break fractions from the simulations.

10We also employed the long-run variance estimators used in Carrion-i-Silvestre and Sansó (2006) and
obtained the same results.

11The modified BIC proposed by Kurozumi and Tuvaandorj (2011) uses the additional penalty term related
to uncertainty of the break point. See Kurozumi and Tuvaandorj (2011) for more details. We also note that
Kejrival and Perron (2010) provided the sup-F test for only cointegration models without a linear trend and
no limiting distribution and no corresponding set of critical values for the sup-F test are given in the case of
models with a linear trend.
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becomes either liberal or conservative depending on the case. Taking this result into account,

the break point could be located outside the confidence interval estimated by BLS. Similarly,

the confidence sets for the break dates in the cointegrating regressions with consumption and

investment are reported in Figures 2(ii) and 2(iii). Similar to the regression with GDP, the

confidence set based on the sup-type test is wider than the others; hence, considering the

stable coverage rate of the sup-type test, the break point could again be located outside the

periods covered by the other methods. We also observe that the confidence set based on our

methods could return an asymmetric interval, while that based on BLS is always symmetric.

To summarize, Russian quarterly macroeconomic variables are cointegrated with oil prices

with a break and the possible break date could range more than one year.

We have so far applied our procedure for model (23) in which the coefficient of the real

oil price, γ, is stable. For completeness, we also consider the model in which γ also sustains

a structural change. Again, we find evidence of the presence of break by the information

criteria, and the tests for cointegration show evidence of cointegration for all time series (see

Table C.1 in Supplementary Online Appendix). The estimated break dates are the same

except for investment, for which the break date moves from 2006Q4 to 2007Q1. As given

in Figure C.1 in Supplementary Online Appendix, the confidence sets for GDP seem to be

very close to that for the previous model except for the result by the exponential-type test

(the confidence set is wider). For consumption, the confidence set based on the average-type

test becomes narrower (only one point), while it becomes wider by using the exponential-type

test. For investment, the confidence sets based on the sup-type and average-type tests remain

the same while the confidence sets based on the exponential-test and BLS become wider.

6. Concluding Remarks

In this paper, we proposed constructing a confidence set for the break date in cointegrating

regressions by inverting the test that maximizes the weighted average of power. We derived

the limiting distribution of the test for the break location, which depends on whether a

linear trend is included and/or the coefficients associated with the I(1) regressors sustain a

structural change. By Monte Carlo simulations, we showed that the confidence set based on

our test, particularly the sup-type test, can better control the coverage rate, while the size of

22



the confidence set is at least as small as the existing method. We then applied our method to

analyze the Russian economy and showed that it is informative for the location of the break

date.
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Table 1: Coverage rates and lengths of the confidence sets (Model I-a)

Coverage rates Lengths of the confidence sets
d BLS sup avg exp BLS sup avg exp
DGP1 T = 100
4 0.789 0.937 0.908 0.897 0.178 0.303 0.273 0.259
8 0.901 0.953 0.927 0.917 0.108 0.141 0.131 0.120
12 0.942 0.960 0.934 0.925 0.083 0.086 0.084 0.074
16 0.963 0.963 0.938 0.928 0.072 0.061 0.063 0.053
DGP2
4 0.807 0.941 0.908 0.904 0.153 0.248 0.220 0.209
8 0.910 0.958 0.924 0.925 0.108 0.108 0.102 0.092
12 0.952 0.965 0.930 0.933 0.088 0.066 0.067 0.057
16 0.968 0.967 0.932 0.936 0.077 0.048 0.052 0.042
DGP3
4 0.645 0.877 0.792 0.807 0.241 0.420 0.352 0.347
8 0.811 0.932 0.867 0.883 0.153 0.227 0.192 0.186
12 0.891 0.956 0.902 0.916 0.116 0.148 0.127 0.122
16 0.924 0.968 0.917 0.932 0.100 0.107 0.094 0.088
DGP4
4 0.808 0.938 0.907 0.902 0.156 0.260 0.237 0.222
8 0.926 0.955 0.926 0.924 0.098 0.120 0.115 0.102
12 0.960 0.961 0.932 0.930 0.077 0.074 0.077 0.064
16 0.972 0.962 0.934 0.932 0.066 0.053 0.060 0.046
DGP5
4 0.691 0.859 0.750 0.774 0.175 0.285 0.229 0.227
8 0.847 0.921 0.827 0.853 0.126 0.147 0.121 0.116
12 0.917 0.949 0.861 0.886 0.106 0.094 0.082 0.076
16 0.952 0.960 0.879 0.904 0.093 0.069 0.064 0.056

DGP1 T = 300
4 0.833 0.953 0.940 0.940 0.126 0.234 0.225 0.213
8 0.918 0.959 0.944 0.944 0.072 0.100 0.103 0.092
12 0.954 0.960 0.945 0.946 0.051 0.060 0.064 0.055
16 0.963 0.962 0.946 0.948 0.043 0.041 0.046 0.039
DGP2
4 0.852 0.952 0.936 0.939 0.117 0.181 0.174 0.163
8 0.925 0.957 0.940 0.943 0.069 0.071 0.076 0.066
12 0.954 0.958 0.942 0.945 0.051 0.043 0.050 0.041
16 0.971 0.959 0.942 0.945 0.043 0.031 0.037 0.030
DGP3
4 0.686 0.928 0.885 0.892 0.204 0.404 0.361 0.354
8 0.833 0.950 0.911 0.918 0.120 0.198 0.180 0.171
12 0.900 0.959 0.922 0.929 0.088 0.122 0.115 0.107
16 0.932 0.965 0.929 0.935 0.071 0.086 0.083 0.076
DGP4
4 0.848 0.953 0.938 0.937 0.112 0.196 0.188 0.177
8 0.935 0.958 0.942 0.943 0.066 0.082 0.086 0.075
12 0.956 0.960 0.943 0.945 0.047 0.049 0.054 0.046
16 0.968 0.961 0.944 0.947 0.038 0.034 0.040 0.033
DGP5
4 0.756 0.926 0.874 0.884 0.164 0.276 0.240 0.235
8 0.889 0.949 0.901 0.916 0.106 0.123 0.112 0.105
12 0.931 0.958 0.909 0.925 0.082 0.074 0.071 0.065
16 0.949 0.962 0.915 0.929 0.066 0.052 0.052 0.046



Table 2: Empirical results

series: yt, p
oil
t

estimated break date : 2008Q3
cointegration test with a break : 0.057
cointegration test without a break : 0.172∗∗

series: ct, p
oil
t

estimated break date : 2008Q4
cointegration test with a break : 0.048
cointegration test without a break : 0.117∗

series: it, p
oil
t

estimated break date : 2006Q4
cointegration test with a break : 0.049
cointegration test without a break : 0.131∗∗

Note: the superscripts *, **, and *** signify significance at 10%, 5% and 1%, respectively.
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A.1. Choice of the Variance of Qλ2(δ)

Under the assumption that {ut} is a sequence of i.i.d. normal random variables and {ut} is

independent of {wb,t} and {wf,t}, the weighted average of power (conditional on {wb,t} and

{wf,t}) becomes∫ ∫
exp

(
1

σ2
y′Mw1R(λ2, λ1)δ −

1

2σ2
δ′R(λ2, λ1)

′Mw1R(λ2, λ1)δ

)
dQλ2(δ)dJ(λ2). (A.1)

Suppose that Qλ2(δ) ∼ N (0,Σ). Then, the inner integral becomes, by integrating out δ,∫
exp

(
1

σ2
y′Mw1R(λ2, λ1)δ −

1

2σ2
δ′R(λ2, λ1)

′Mw1R(λ2, λ1)δ

)
dQλ2(δ)

=

∣∣∣∣I + Σ
1

σ2
R(λ2, λ1)

′Mw1R(λ2, λ1)

∣∣∣∣−1/2
× exp

[
1

2σ2
y′Mw1R(λ2, λ1)

(
σ2Σ−1 +R(λ2, λ1)

′Mw1R(λ2, λ1)
)−1

R(λ2, λ1)
′Mw1y

]
.

In order for the determinant to be tractable, we choose Σ such that it is proportional to

σ2 (R(λ2, λ1)
′Mw1R(λ2, λ1))

−1 and thus we set

Qλ2(δ) ∼ N
(

0,
cσ2

T
Σ−1δ

)
where Σδ =

1

T
R(λ2, λ1)

′Mw1R(λ2, λ1).

In this case, it is easy to see that the determinat reduces to |I + cI|−1/2 = (1 + c)−pβ/2 while

the inverse in the second term becomes(
1

c
R(λ2, λ1)

′Mw1R(λ2, λ1) +R(λ2, λ1)
′Mw1R(λ2, λ1)

)−1
=

c

1 + c

(
R(λ2, λ1)

′Mw1R(λ2, λ1)
)−1

.
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A.2. Proof of Theorem 1

Here, we prove the theorem for Model II-c. The other cases can be proven in the same

manner. For the test statistic L̃RT (λ1), we note that

y′Mw1R(λ2, λ1)
(
R(λ2, λ1)

′Mw1R(λ2, λ1)
)−1

R(λ2, λ1)
′Mw1y

=
(
D′TR(λ2, λ1)

′Mw̃1y
)′ (

D′TR(λ2, λ1)
′Mw̃1R(λ2, λ1)DT

)−1 (
D′TR(λ2, λ1)

′Mw̃1y
)
,

where DT = diag{T−1/2, T−3/2, T−1Ω−1/2bb } and Mw̃1 = W̃ (λ1)(W̃ (λ1)
′W̃ (λ1))

−1W̃ (λ1)
′ with

W̃ (λ1) = [Wb −Wb(λ1),Wb(λ1),Wf ]. Note that DT adjusts the convergence order as well as

transforms the I(1) regressors zb,t in R(λ2, λ1) to z̃b,t = Ω
−1/2
bb zb,t and

1√
T
z̃b,[rT ] =

1√
T

Ω
−1/2
bb zb,t ⇒ Bb(r) uniformly over 0 ≤ r ≤ 1,

meaning that the resulting distribution becomes free of the nuisance parameters.

Let us consider the case where λ2 < λ1. We first note that

D′TR(λ2, λ1)
′Mw̃1R(λ2, λ1)DT

= D′TR(λ2, λ1)
′R(λ2, λ1)DT

−D′TR(λ2, λ1)
′W̃ (λ1)D̃T

(
D̃′T W̃ (λ1)

′W̃ (λ1)D̃T

)−1
D̃′T W̃ (λ1)

′R(λ2, λ1)DT ,

where D̃T =



DT 0

[
0

− 1
T Ω−1bb ΩbfΩ

−1/2
f ·b

]
0

0 DT

[
0

− 1
T Ω−1bb ΩbfΩ

−1/2
f ·b

]
0

0 0 1
T Ω
−1/2
f ·b 0

0 0 0 T−1/2Ipxf


with Ωf ·b = Ωff − ΩfbΩ

−1
bb Ωbf as defined before Theorem 1. Note that the matrix D̃T

transforms zf,[rT ] in W̃ (λ1) to z̃f ·b,t = Ω
−1/2
f ·b (zf,t − ΩfbΩ

−1
bb zb,t) and

1√
T
z̃f ·b,[rT ] =

1√
T

Ω
−1/2
f ·b zf,[rT ] −

1

T
Ω
−1/2
f ·b ΩfbΩ

−1
bb zb,[rT ] ⇒ Bf ·b(r)

uniformly over 0 ≤ r ≤ 1,which is independent of Bb(r) and Bu(r).
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Then, under Assumption 1, we can see that

D′TR(λ2, λ1)
′R(λ2, λ1)DT

= D′T

T1∑
t=T2+1

wb,tw
′
b,tDT

=


T1−T2
T

1
T 2

∑T1
t=T2+1 t

1
T
√
T

∑T1
t=T2+1 z̃

′
b,t

1
T 2

∑T1
t=T2+1 t

1
T 3

∑T1
t=T2+1 t

2 1
T 2
√
T

∑T1
t=T2+1 tz̃

′
b,t

1
T
√
T

∑T1
t=T2+1 z̃b,t

1
T 2
√
T

∑T1
t=T2+1 tz̃b,t

1
T 2

∑T1
t=T2+1 z̃b,tz̃

′
b,t



⇒

 λ1 − λ2
λ21−λ22

2

∫ λ1
λ2
Bb(r)

′dr
λ21−λ22

2
λ31−λ32

3

∫ λ1
λ2
rBb(r)

′dr∫ λ1
λ2
Bb(r)dr

∫ λ1
λ2
rBb(r)dr

∫ λ1
λ2
Bb(r)Bb(r)

′dr


=

∫ λ1

λ2

B̃b(r)B̃b(r)
′dr, (A.2)

where B̃b(r) = [1, r, Bb(r)
′]′. In the same manner, we have

D′TR(λ2, λ1)
′W̃ (λ1)D̃T

= D′T

T1∑
t=T2+1

wb,tw̃t(λ1)
′D̃T

=


T1−T2
T

1
T 2

∑T1
t=T2+1 t

1
T
√
T

∑T1
t=T2+1 z̃

′
b,t

1
T 2

∑T1
t=T2+1 t

1
T 3

∑T1
t=T2+1 t

2 1
T 2
√
T

∑T1
t=T2+1 tz̃

′
b,t

1
T
√
T

∑T1
t=T2+1 z̃b,t

1
T 2

∑T1
t=T2+1 tz̃b,t

1
T 2

∑T1
t=T2+1 z̃b,tz̃

′
b,t

0 0 0 1
T
√
T

∑T1
t=T2+1 z̃

′
f ·b,t

1
T

∑T1
t=T2+1 x

′
f,t

0 0 0 1
T 2
√
T

∑T1
t=T2+1 tz̃

′
f ·b,t

1
T 2

∑T1
t=T2+1 tx

′
f,t

0 0 0 1
T 2

∑T1
t=T2+1 z̃b,f z̃

′
f ·b,t

1
T
√
T

∑T1
t=T2+1 z̃b,tx

′
f,t


⇒

[∫ λ1

λ2

B̃b(r)B̃b(r)
′dr, 0,

∫ λ1

λ2

B̃b(r)Bf ·b(r)
′dr, 0

]
= [J1(λ1, λ2), 0] , (A.3)

and

D̃′T W̃ (λ1)
′W̃ (λ1)D̃T

= D̃′T

T∑
t=1

w̃t(λ1)w̃t(λ1)
′D̃T

⇒


∫ λ1
0 B̃b(r)B̃b(r)

′dr 0
∫ λ1
0 B̃b(r)Bf ·b(r)

′dr 0

0
∫ 1
λ1
B̃b(r)B̃b(r)

′dr
∫ 1
λ1
B̃b(r)Bf ·b(r)

′dr 0∫ λ1
0 Bf ·b(r)B̃b(r)

′dr
∫ 1
λ1
Bf ·b(r)B̃b(r)

′dr
∫ 1
0 Bf ·b(r)Bf ·b(r)

′dr 0

0 0 0 Σx
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=

[
K(λ1) 0

0 Σx

]
. (A.4)

Then, from (A.2)–(A.4), we have

D′TR(λ2, λ1)
′Mw̃1R(λ2, λ1)DT ⇒

∫ λ1

λ2

B̃b(r)B̃b(r)
′dr − J1(λ1, λ2)′K(λ1)

−1J1(λ1, λ2). (A.5)

Next, since y = W (λ1)β + u under the null hypothesis of λ0 = λ1, as can be seen in (13),

we have

D′TR(λ2, λ1)
′Mw̃1y

= D′TR(λ2, λ1)
′u−D′TR(λ2, λ1)

′W̃ (λ1)D̃T

(
D̃′T W̃ (λ1)

′W̃ (λ1)D̃T

)−1
D̃′T W̃ (λ1)

′u.

Again, under Assumption 1, we have

D′TR(λ2, λ1)
′u = D′T

T1∑
t=T2+1

wb,tut

=


1√
T

∑T1
t=T2+1 ut

1
T
√
T

∑T1
t=T2+1 tut

1
T

∑T1
t=T2+1 z̃b,tut


⇒ ω1/2

uu

∫ λ1

λ2

B̃b(r)dBu(r), (A.6)

and

D̃′T W̃ (λ1)
′u = D̃′T

T∑
t=1

w̃t(λ1)ut

⇒


ω
1/2
uu

∫ λ1
0 B̃b(r)dBu(r)

ω
1/2
uu

∫ 1
λ1
B̃b(r)dBu(r)

ω
1/2
uu

∫ 1
0 Bf ·b(r)dBu(r)
Op(1)

 =

[
ω
1/2
uu L(λ1)
Op(1)

]
. (A.7)

From (A.3), (A.4), (A.6), and (A.7), we obtain

D′TR(λ2, λ1)
′Mw̃1y ⇒ ω1/2

uu

(∫ λ1

λ2

B̃b(r)dBu(r)− J1(λ1, λ2)K(λ1)
−1L(λ1)

)
. (A.8)

The limiting distribution of the test statistic is obtained from (A.5) and (A.8) for λ2 < λ1.

The result for λ2 > λ1 is obtained similarly.

The theorem for the other models is proved in the same manner.�
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A.3. General Leads and Lags

In the main part of the article, we assumed that the leads-and-lags of the first differences of

the I(1) variables are finite as given in (2). However, they are infinite in general, as pointed

out in Remark 1, and thus in this appendix, we relax this assumption.

We start with the original regression model given by

yt = w′b,tβb + wb,t(λ0)
′δb + w′f,tβf + et, (A.9)

∆zb,t = uzb,t and ∆zf,t = uzf,t.

Let ξt = [et, u
z′
b,t, u

z′
f,t]
′ be a (pzb + pzf + 1) vector. To allow for the infinite leads-and-lags

expression, we make the following additional assumption as supposed in Saikkonen (1991)

and Kejriwal and Perron (2008).

Assumption A.1 (a) The process ξt is stationary with mean zero and the continuous spectral

density matrix given by fξξ(λ). (b) The spectral density matrix fξξ(λ) is bounded away from

zero so that fξξ(λ) ≥ αIpzb+p
z
f+1 for λ ∈ [0, π] and some α > 0. (c) The covariance function

of ξt is absolutely summable;
∑∞

j=−∞ ‖E[ξtξt−j ]‖ < ∞ where ‖ · ‖ is the standard Euclidean

norm. (d) The fourth order cumulants of ξt denoted by κijk`(m1,m2,m3) satisfy

∞∑∑∑
m1,m2,m3=−∞

|κijkl(m1,m2,m3)| <∞.

From Assumption A.1, we have (see also Brillinger, 1981),

et =
∞∑

j=−∞
π′b,ju

z
b,t−j +

∞∑
j=−∞

π′f,ju
z
f,t−j + ut, (A.10)

where ut is a stationary process such that E[utu
z′
b,t−j ] = 0 and E[utu

z′
f,t−j ] = 0 for j =

0,±1,±2, · · · . Inserting (A.10) into (A.9), we obtain

yt = w′b,tβb + wb,t(λ0)
′δb + w′f,tβf +

∞∑
j=−∞

π′b,j∆zb,t−j +

∞∑
j=−∞

π′f,j∆zf,t−j + ut

= w′b,tβb + wb,t(λ0)
′δb + w′f,tβf +

l∑
j=−l

π′b,j∆zb,t−j +
l∑

j=−l
π′f,j∆zf,t−j + u∗t , (A.11)
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where u∗t = ut + vt with vt =
∑
|j|>l π

′
b,j∆zb,t−j +

∑
|j|>l π

′
f,j∆zf,t−j . In this case, the lag

truncation parameter l is required to go to infinity as T → ∞ and to satisfy the following

condition (Kejriwal and Perron, 2008):

l2

T
→ 0, (A.12)

l
∑
|j|>l

(‖πb,j‖+ ‖πf,j‖) → 0. (A.13)

Note that (A.12) is the upper bound for l to go to infinity whereas (A.13) corresponds to the

lower bound. As pointed out by Kejriwal and Perron (2008), when ξt is a finite order ARMA

process, the leads-and-lags order l chosen by information criteria such as the AIC and BIC

satisfy conditions (A.12) and (A.13).

We shall prove that both (A.5) and (A.8) holds under Assumption A.1, (A.12), and (A.13).

Allowing for an abuse of notation, let w̃∗t (λ1) = [(wb,t − wb,t(λ1))′, wb,t(λ1)′, w′f,t]′ where wf,t

does not include xf,t, which consists of only the leads-and-lags of the first differences of the

I(1) regressors. Accordingly, we partition D̃T into diag{D̃∗T , T−1/2Ipxf }. In this case, we have

w̃t(λ1) = [w̃∗t (λ1)
′, x′f,t]

′. Then, we can write

D′TR(λ2, λ1)
′W̃ (λ1)D̃T =

D′T T1∑
t=T2+1

wb,tw̃
∗
t (λ1)

′D̃∗T , T
−1/2D′T

T1∑
t=T2+1

wb,tx
′
f,t

 ,
the first term of which converges to J1(λ1, λ2) as given in (A.3), while∥∥∥∥∥∥T−1/2D′T

T1∑
t=T2+1

wb,tx
′
f,t

∥∥∥∥∥∥ = Op

( √
l√
T

)
(A.14)

using Lemma A.1(ii) of Kejriwal and Perron (2008). Similarly, we can write

D̃′T W̃ (λ1)
′W̃ (λ1)D̃T =

[
D̃∗′T

∑T
t=1 w̃

∗
t (λ1)w̃

∗
t (λ1)

′D̃∗T T−1/2D̃∗′T
∑T

t=1 w̃
∗
t (λ1)x

′
f,t

T−1/2
∑T

t=1 xf,tw̃
∗
t (λ1)

′D̃∗T T−1
∑T

t=1 xf,tx
′
f,t

]
,

the upper-left block converges to K(λ1) as given in (A.4), while∥∥∥∥∥T−1/2D̃∗′T
T∑
t=1

w̃∗t (λ1)x
′
f,t

∥∥∥∥∥ = Op

( √
l√
T

)
, (A.15)

∥∥∥∥∥ 1

T

T∑
t=1

xf,tx
′
f,t

∥∥∥∥∥
1

= Op(1),

∥∥∥∥∥∥
(

1

T

T∑
t=1

xf,tx
′
f,t

)−1∥∥∥∥∥∥
1

= Op(1), (A.16)
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using Lemma A.1(i) and (ii) of Kejriwal and Perron (2008). From (A.2)–(A.4) and (A.14)–

(A.16), we have (A.5) because of (A.12).

Similarly, since y = W (λ1)β + u∗ under the null hypothesis of λ0 = λ1, we have

D′TR(λ2, λ1)
′Mw̃1y (A.17)

= D′TR(λ2, λ1)
′u−D′TR(λ2, λ1)

′W̃ (λ1)D̃T

(
D̃′T W̃ (λ1)

′W̃ (λ1)D̃T

)−1
D̃′T W̃ (λ1)

′u

+D′TR(λ2, λ1)
′u−D′TR(λ2, λ1)

′W̃ (λ1)D̃T

(
D̃′T W̃ (λ1)

′W̃ (λ1)D̃T

)−1
D̃′T W̃ (λ1)

′u.

In the same way as the proof given in Appendix A.2, from (A.14)–(A.16) and using Lemma

A.1(iii) of Kejriwal and Perron (2008), the first two terms of the right-hand side of (A.17)

converge to (A.8). As a result, the rest we have to prove is that the last two terms of (A.17)

converge to 0 in probability, which is proved using (A.14)–(A.16) and the following relations

obtained using Lemma A.1(iv) and (v) of Kejriwal and Perron (2008),∥∥∥∥∥∥D′T
T1∑

t=T2+1

wb,tvt

∥∥∥∥∥∥ = op

(
1

l

)
∥∥∥∥∥D̃∗′T

T∑
t=1

w̃∗t (λ1)vt

∥∥∥∥∥ = op

(
1

l

)
,

∥∥∥∥∥ 1√
T

T∑
t=1

xf,tvt

∥∥∥∥∥ = op

(√
T√
l

)
. �
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Appendix B



Table B.1: Coefficients of the Response Surface Regressions (Model Ia)

confidence level= 0.9 confidence level= 0.95
pzb = 1 2 3 4 pzb = 1 2 3 4

sup-LRT

a0 695.025 230.321 611.599 446.265 527.107 194.143 614.973 295.263
a−1 −682.721 −215.312 −594.541 −427.085 −513.026 −177.273 −596.134 −274.177
a1 −677.973 −216.055 −591.452 −425.746 −511.464 −180.072 −593.118 −274.051
a2 614.214 205.077 543.605 394.135 469.267 177.585 546.530 255.638
a3 −359.150 −140.560 −332.187 −247.654 −280.410 −128.900 −335.239 −166.605

avg-LRT

a0 −67.517 −4.742 38.664 −44.795 −25.396 14.564 −1.411 13.688
a−1 70.655 9.170 −33.019 51.692 29.043 −9.570 7.700 −6.094
a1 69.984 9.347 −32.545 50.884 28.021 −8.879 8.139 −6.433
a2 −60.633 −7.170 32.583 −39.274 −16.550 10.989 −2.378 15.951
a3 35.541 7.592 −16.432 20.054 5.967 −2.758 3.964 −11.637

exp-LRT

a0 2.798 −12.572 53.978 36.773 97.372 102.603 1.783 129.459
a−1 −0.123 16.283 −49.374 −31.246 −94.085 −98.245 3.528 −123.203
a1 −0.384 15.638 −49.078 −31.513 −93.667 −97.790 3.760 −121.969
a2 1.194 −13.246 44.108 30.038 84.168 88.665 −3.895 109.088
a3 −2.076 5.542 −26.456 −21.076 −45.404 −50.997 0.252 −62.366

Table B.2: Coefficients of the Response Surface Regressions (Model Ib)

confidence level= 0.9 confidence level= 0.95
pzf = 1 2 3 4 pzf = 1 2 3 4

sup-LRT

a0 266.232 63.571 155.596 182.708 548.169 347.244 190.643 10.798
a−1 −256.956 −54.017 −145.772 −172.655 −537.386 −336.214 −179.279 0.931
a1 −256.999 −54.097 −144.358 −170.615 −534.243 −333.991 −177.364 0.950
a2 242.167 53.478 131.757 154.259 486.989 306.444 163.143 1.629
a3 −153.729 −41.001 −79.626 −91.230 −283.650 −182.508 −99.920 −7.094

avg-LRT

a0 −28.100 −87.289 −44.889 −31.668 77.461 −53.186 −71.531 −89.269
a−1 29.902 89.059 46.595 33.348 −75.256 55.330 73.620 91.285
a1 29.896 88.601 46.847 33.434 −75.056 55.193 73.281 91.366
a2 −29.054 −81.589 −45.638 −32.429 69.716 −51.809 −67.679 −87.243
a3 21.657 48.817 30.398 21.538 −37.131 34.100 41.466 55.902

exp-LRT

a0 14.082 5.506 −32.751 −46.655 146.433 33.369 −17.908 −102.067
a−1 −12.478 −3.910 34.351 48.281 −144.355 −31.269 20.016 104.195
a1 −12.745 −3.912 34.383 48.052 −143.521 −31.047 19.990 103.545
a2 12.548 3.865 −31.986 −43.875 129.638 27.262 −17.976 −94.010
a3 −7.824 −2.851 18.592 24.749 −71.139 −13.809 9.694 53.160



Table B.3: Coefficients of the Response Surface Regressions (Model Ic)

confidence level= 0.9 confidence level= 0.95
pzf = 1 2 3 pzf = 1 2 3

pzb = 1 sup-LRT
a0 163.031 −70.596 66.972 37.957 −42.353 39.926
a−1 −150.319 83.405 −54.009 −23.612 56.782 −25.342
a1 −150.468 82.167 −54.751 −24.648 57.306 −23.862
a2 141.708 −67.818 56.836 30.489 −51.942 18.506
a3 −98.478 18.275 −51.103 −41.259 17.544 −18.796

avg-LRT
a0 −26.579 −74.864 −36.055 −18.325 −155.061 −103.670
a−1 29.780 78.035 39.204 22.050 158.783 107.355
a1 29.494 77.806 39.254 21.893 157.819 107.142
a2 −24.988 −70.867 −36.294 −15.866 −140.760 −97.515
a3 15.644 43.709 24.280 9.116 82.143 60.743

exp-LRT
a0 −23.472 −19.059 −61.708 −137.371 −136.612 −85.466
a−1 26.227 21.788 64.464 140.757 139.991 88.873
a1 25.873 22.148 64.148 139.533 139.353 88.336
a2 −23.011 −22.124 −58.419 −125.736 −128.447 −81.922
a3 11.256 13.606 31.669 69.001 74.790 48.487

pzb = 2 sup-LRT
a0 303.330 152.064 103.021 9.541
a−1 −288.201 −136.822 −85.974 7.569
a1 −285.274 −135.774 −86.839 6.744
a2 257.835 125.711 87.238 −2.350
a3 −161.720 −90.329 −73.026 −14.775

avg-LRT
a0 −29.874 −27.280 −43.158 −51.871
a−1 34.407 31.809 48.310 57.023
a1 33.970 31.594 48.051 56.689
a2 −28.169 −28.281 −38.988 −48.233
a3 17.654 20.746 23.029 30.478

exp-LRT
a0 −68.448 −46.246 −31.903 31.417
a−1 72.220 50.010 36.376 −26.975
a1 71.937 50.017 36.364 −26.210
a2 −66.882 −47.770 −33.859 20.936
a3 38.059 28.225 18.506 −10.155

pzb = 3 sup-LRT
a0 394.751 313.344
a−1 −377.388 −294.174
a1 −375.966 −293.081
a2 346.640 272.950
a3 −217.638 −178.831

avg-LRT
a0 40.488 182.786
a−1 −34.765 −176.403
a1 −34.379 −174.802
a2 33.773 164.069
a3 −16.021 −90.843

exp-LRT
a0 21.183 −35.411
a−1 −16.487 40.873
a1 −16.666 39.931
a2 15.812 −32.939
a3 −11.680 12.955



Table B.4: Coefficients of the Response Surface Regressions (Model IIa)

confidence level= 0.9 confidence level= 0.95
pzb = 1 2 3 4 pzb = 1 2 3 4

sup-LRT

a0 492.130 369.181 515.946 423.522 470.123 304.997 259.217 328.062
a−1 −476.967 −351.765 −496.675 −402.336 −453.083 −285.782 −238.126 −304.848
a1 −474.993 −350.083 −493.984 −400.520 −451.868 −284.049 −236.043 −303.513
a2 439.066 317.486 451.864 368.371 414.827 258.147 214.645 279.579
a3 −273.010 −192.033 −275.223 −230.669 −252.008 −161.675 −138.459 −178.937

avg-LRT

a0 −46.922 −1.169 36.556 90.531 4.796 −13.991 105.999 108.377
a−1 51.387 6.836 −29.658 −82.435 0.249 20.297 −98.391 −99.491
a1 50.572 7.308 −29.493 −82.117 0.210 21.355 −97.361 −99.343
a2 −40.291 −4.427 31.347 80.290 6.116 −17.640 93.101 99.859
a3 21.002 5.001 −16.723 −44.961 −2.391 16.163 −47.740 −56.396

exp-LRT

a0 40.067 103.672 156.828 186.745 98.406 99.830 72.113 11.858
a−1 −36.364 −99.066 −151.349 −180.362 −94.030 −94.459 −65.837 −4.608
a1 −36.349 −97.902 −149.611 −179.484 −93.976 −93.386 −64.653 −5.442
a2 32.965 85.377 131.562 163.393 87.219 81.303 54.872 8.838
a3 −19.352 −45.650 −71.917 −95.791 −52.039 −43.824 −28.958 −11.955



Table B.5: Coefficients of the Response Surface Regressions (Model IIb)

confidence level= 0.9 confidence level= 0.95
pzf = 1 2 3 4 pzf = 1 2 3 4

sup-LRT

a0 328.702 334.786 346.856 257.698 362.135 396.644 311.699 452.329
a−1 −315.765 −321.771 −333.813 −244.557 −347.580 −381.994 −297.061 −437.608
a1 −313.389 −318.486 −329.606 −241.258 −342.930 −377.776 −292.785 −431.854
a2 287.581 288.122 292.281 212.770 302.797 336.200 256.617 381.415
a3 −180.414 −175.235 −167.344 −121.852 −173.933 −192.287 −143.199 −212.898

avg-LRT

a0 −47.527 26.397 16.797 15.562 −33.608 20.189 90.073 107.529
a−1 50.677 −23.232 −13.645 −12.400 37.283 −16.484 −86.364 −103.796
a1 50.875 −22.646 −12.646 −11.601 38.181 −15.249 −84.382 −102.383
a2 −46.729 19.992 7.879 7.609 −34.755 12.295 72.716 91.846
a3 30.778 −7.188 3.431 2.434 24.880 −0.170 −31.465 −45.685

exp-LRT

a0 −42.071 23.915 76.243 132.601 −128.274 26.718 82.005 96.941
a−1 44.739 −21.250 −73.595 −129.919 131.555 −23.446 −78.784 −93.699
a1 44.922 −20.306 −71.722 −128.177 131.258 −22.277 −76.734 −91.967
a2 −42.682 15.507 58.774 111.877 −121.773 15.717 63.289 78.577
a3 25.522 −7.076 −27.017 −58.853 72.197 −3.896 −28.854 −38.897



Table B.6: Coefficients of the Response Surface Regressions (Model IIc)

confidence level= 0.9 confidence level= 0.95
pzf = 1 2 3 pzf = 1 2 3

pzb = 1 sup-LRT
a0 335.274 348.389 451.206 128.014 524.278 144.918
a−1 −320.020 −333.177 −435.934 −111.019 −507.412 −127.889
a1 −318.772 −331.286 −433.120 −110.203 −502.047 −127.067
a2 297.613 305.824 397.958 103.123 449.871 119.633
a3 −192.373 −190.989 −243.560 −75.545 −259.791 −85.093

avg-LRT
a0 48.859 77.250 5.872 6.978 −48.210 37.485
a−1 −44.417 −72.837 −1.431 −1.886 53.271 −32.442
a1 −43.858 −71.725 −1.230 −1.829 53.587 −31.341
a2 41.912 65.283 2.668 6.678 −46.686 29.331
a3 −21.831 −32.141 1.858 −1.975 32.086 −9.949

exp-LRT
a0 35.927 32.331 11.703 110.311 126.707 126.436
a−1 −32.253 −28.693 −8.058 −105.973 −122.412 −122.153
a1 −31.709 −27.888 −7.561 −104.863 −120.880 −120.698
a2 27.280 22.968 5.399 94.251 106.734 108.314
a3 −14.855 −11.444 −2.367 −53.322 −56.984 −60.677

pzb = 2 sup-LRT
a0 468.094 205.131 211.642 45.048
a−1 −450.681 −187.666 −192.428 −25.757
a1 −447.824 −186.945 −191.186 −25.702
a2 405.279 170.669 174.401 24.190
a3 −240.676 −109.431 −112.630 −27.104

avg-LRT
a0 51.807 75.889 147.598 47.473
a−1 −46.117 −70.191 −141.296 −41.090
a1 −45.555 −69.196 −138.779 −40.375
a2 44.600 63.949 125.323 41.374
a3 −24.737 −32.509 −62.270 −21.834

exp-LRT
a0 73.477 44.888 119.248 121.963
a−1 −68.866 −40.253 −113.902 −116.606
a1 −68.134 −39.931 −112.207 −115.649
a2 60.564 35.440 96.830 105.056
a3 −34.944 −20.800 −50.816 −62.001

pzb = 3 sup-LRT
a0 385.532 335.216
a−1 −366.242 −314.067
a1 −364.027 −311.014
a2 333.115 279.456
a3 −206.430 −169.314

avg-LRT
a0 64.721 −1.855
a−1 −57.822 9.514
a1 −57.221 9.304
a2 55.161 −0.485
a3 −28.746 0.244

exp-LRT
a0 132.675 68.744
a−1 −127.162 −62.447
a1 −126.196 −61.845
a2 113.289 55.648
a3 −64.996 −33.249



Table B.7: Coverage rates and lengths of the confidence sets (Model I-b)

Coverage rates Lengths of the confidence sets
d BLS sup avg exp BLS sup avg exp
DGP1 T = 100
4 0.886 0.952 0.934 0.934 0.151 0.216 0.229 0.189
8 0.978 0.965 0.947 0.947 0.053 0.058 0.075 0.055
12 0.996 0.969 0.949 0.951 0.031 0.038 0.046 0.036
16 1.000 0.970 0.950 0.953 0.030 0.028 0.035 0.027
DGP2
4 0.875 0.950 0.930 0.929 0.150 0.226 0.239 0.198
8 0.975 0.965 0.945 0.945 0.053 0.059 0.077 0.056
12 0.996 0.968 0.948 0.950 0.031 0.038 0.047 0.036
16 1.000 0.970 0.949 0.951 0.030 0.028 0.035 0.027
DGP3
4 0.687 0.870 0.810 0.806 0.283 0.421 0.361 0.349
8 0.882 0.928 0.877 0.884 0.114 0.147 0.149 0.125
12 0.964 0.963 0.914 0.925 0.062 0.069 0.081 0.062
16 0.991 0.975 0.925 0.940 0.043 0.048 0.055 0.044
DGP4
4 0.912 0.950 0.933 0.929 0.120 0.166 0.189 0.149
8 0.984 0.965 0.947 0.945 0.045 0.050 0.064 0.049
12 0.999 0.968 0.948 0.949 0.030 0.035 0.042 0.034
16 1.000 0.967 0.947 0.948 0.030 0.029 0.033 0.028
DGP5
4 0.666 0.838 0.794 0.776 0.221 0.352 0.309 0.288
8 0.890 0.921 0.869 0.873 0.086 0.115 0.123 0.098
12 0.973 0.960 0.903 0.917 0.049 0.056 0.066 0.051
16 0.996 0.969 0.914 0.928 0.035 0.042 0.047 0.038

DGP1 T = 300
4 0.925 0.954 0.954 0.949 0.087 0.118 0.158 0.119
8 0.971 0.958 0.957 0.952 0.026 0.043 0.057 0.044
12 0.990 0.959 0.958 0.954 0.016 0.029 0.038 0.029
16 0.995 0.959 0.958 0.954 0.010 0.021 0.028 0.022
DGP2
4 0.925 0.953 0.953 0.949 0.087 0.120 0.160 0.121
8 0.969 0.958 0.957 0.952 0.026 0.043 0.057 0.044
12 0.990 0.959 0.957 0.953 0.016 0.029 0.038 0.029
16 0.995 0.960 0.957 0.954 0.010 0.022 0.028 0.022
DGP3
4 0.776 0.924 0.901 0.898 0.236 0.380 0.351 0.332
8 0.918 0.948 0.923 0.924 0.074 0.100 0.125 0.095
12 0.961 0.958 0.933 0.937 0.036 0.053 0.068 0.052
16 0.985 0.962 0.937 0.941 0.023 0.039 0.049 0.039
DGP4
4 0.936 0.953 0.949 0.946 0.066 0.084 0.119 0.086
8 0.978 0.957 0.952 0.950 0.021 0.037 0.049 0.038
12 0.991 0.957 0.952 0.951 0.013 0.025 0.032 0.025
16 0.999 0.958 0.952 0.951 0.010 0.019 0.024 0.019
DGP5
4 0.788 0.914 0.894 0.885 0.185 0.297 0.286 0.259
8 0.914 0.944 0.918 0.920 0.055 0.074 0.096 0.072
12 0.965 0.955 0.927 0.932 0.028 0.045 0.056 0.044
16 0.989 0.958 0.930 0.937 0.019 0.034 0.041 0.033



Table B.8: Coverage rates and lengths of the confidence sets (Model II-a)

Coverage rates Lengths of the confidence sets
d BLS sup avg exp BLS sup avg exp
DGP1 T = 100
4 0.956 0.956 0.915 0.911 0.047 0.082 0.081 0.063
8 0.996 0.962 0.923 0.920 0.032 0.020 0.028 0.016
12 0.999 0.963 0.923 0.920 0.030 0.012 0.019 0.011
16 1.000 0.963 0.923 0.920 0.030 0.010 0.015 0.010
DGP2
4 0.879 0.943 0.892 0.894 0.061 0.144 0.130 0.114
8 0.960 0.956 0.911 0.911 0.045 0.050 0.050 0.040
12 0.979 0.958 0.916 0.915 0.041 0.028 0.030 0.023
16 0.990 0.959 0.917 0.916 0.039 0.020 0.023 0.018
DGP3
4 0.815 0.923 0.831 0.856 0.080 0.193 0.155 0.141
8 0.982 0.983 0.925 0.938 0.038 0.047 0.048 0.035
12 0.996 0.987 0.933 0.945 0.032 0.021 0.028 0.017
16 0.998 0.988 0.934 0.946 0.031 0.014 0.021 0.012
DGP4
4 0.968 0.949 0.904 0.899 0.040 0.064 0.070 0.049
8 0.997 0.954 0.909 0.905 0.031 0.017 0.028 0.014
12 0.999 0.954 0.909 0.905 0.030 0.011 0.019 0.010
16 1.000 0.954 0.910 0.906 0.030 0.010 0.015 0.009
DGP5
4 0.772 0.869 0.737 0.767 0.070 0.168 0.129 0.119
8 0.931 0.942 0.819 0.853 0.049 0.068 0.057 0.048
12 0.966 0.957 0.837 0.871 0.044 0.038 0.035 0.028
16 0.981 0.962 0.845 0.878 0.042 0.027 0.026 0.021

DGP1 T = 300
4 0.967 0.962 0.939 0.948 0.024 0.044 0.051 0.039
8 0.995 0.963 0.941 0.950 0.012 0.014 0.018 0.013
12 0.998 0.963 0.941 0.950 0.011 0.008 0.012 0.008
16 1.000 0.963 0.941 0.950 0.010 0.006 0.010 0.006
DGP2
4 0.910 0.959 0.936 0.941 0.038 0.098 0.096 0.086
8 0.968 0.962 0.939 0.945 0.024 0.033 0.035 0.029
12 0.983 0.963 0.939 0.945 0.020 0.018 0.021 0.017
16 0.988 0.963 0.939 0.946 0.017 0.012 0.016 0.012
DGP3
4 0.855 0.950 0.899 0.915 0.056 0.168 0.151 0.133
8 0.975 0.974 0.927 0.944 0.020 0.034 0.035 0.029
12 0.995 0.977 0.931 0.947 0.013 0.018 0.020 0.016
16 0.997 0.977 0.931 0.947 0.011 0.012 0.015 0.011
DGP4
4 0.979 0.962 0.939 0.943 0.020 0.035 0.040 0.031
8 0.997 0.962 0.939 0.944 0.011 0.012 0.017 0.011
12 0.999 0.962 0.939 0.944 0.010 0.007 0.012 0.006
16 0.999 0.962 0.940 0.944 0.010 0.005 0.009 0.005
DGP5
4 0.815 0.934 0.865 0.885 0.055 0.166 0.142 0.136
8 0.934 0.959 0.898 0.916 0.032 0.060 0.054 0.049
12 0.971 0.966 0.908 0.926 0.024 0.032 0.031 0.027
16 0.980 0.967 0.910 0.929 0.022 0.021 0.022 0.018



Table B.9: Coverage rates and lengths of the confidence sets (Model II-b)

Coverage rates Lengths of the confidence sets
d BLS sup avg exp BLS sup avg exp
DGP1 T = 100
4 0.987 0.975 0.927 0.935 0.040 0.041 0.049 0.034
8 1.000 0.978 0.930 0.939 0.030 0.016 0.022 0.014
12 1.000 0.978 0.930 0.939 0.030 0.010 0.016 0.010
16 1.000 0.978 0.930 0.939 0.030 0.010 0.012 0.009
DGP2
4 0.986 0.973 0.922 0.931 0.040 0.042 0.053 0.035
8 1.000 0.976 0.924 0.935 0.030 0.016 0.022 0.014
12 1.000 0.976 0.924 0.935 0.030 0.010 0.016 0.010
16 1.000 0.976 0.924 0.935 0.030 0.010 0.012 0.009
DGP3
4 0.866 0.925 0.815 0.847 0.073 0.157 0.128 0.104
8 0.997 0.983 0.885 0.923 0.032 0.029 0.028 0.023
12 1.000 0.984 0.887 0.923 0.030 0.016 0.020 0.013
16 1.000 0.984 0.887 0.923 0.030 0.011 0.015 0.010
DGP4
4 0.991 0.970 0.925 0.930 0.033 0.036 0.044 0.029
8 1.000 0.970 0.926 0.932 0.030 0.013 0.022 0.011
12 1.000 0.970 0.926 0.932 0.030 0.010 0.014 0.009
16 1.000 0.970 0.926 0.932 0.030 0.010 0.011 0.009
DGP5
4 0.885 0.917 0.786 0.823 0.059 0.113 0.096 0.076
8 1.000 0.975 0.837 0.880 0.030 0.025 0.028 0.019
12 1.000 0.975 0.837 0.880 0.030 0.012 0.018 0.010
16 1.000 0.975 0.837 0.880 0.030 0.010 0.013 0.009

DGP1 T = 300
4 0.979 0.960 0.940 0.945 0.019 0.024 0.030 0.022
8 0.999 0.962 0.942 0.947 0.010 0.011 0.013 0.010
12 1.000 0.962 0.942 0.947 0.010 0.008 0.009 0.007
16 1.000 0.962 0.942 0.947 0.010 0.005 0.008 0.005
DGP2
4 0.978 0.960 0.939 0.944 0.019 0.024 0.031 0.022
8 0.999 0.961 0.941 0.945 0.010 0.011 0.013 0.010
12 1.000 0.961 0.941 0.946 0.010 0.008 0.009 0.007
16 1.000 0.961 0.941 0.946 0.010 0.005 0.008 0.005
DGP3
4 0.901 0.943 0.889 0.902 0.049 0.108 0.111 0.081
8 0.994 0.965 0.911 0.927 0.017 0.021 0.023 0.018
12 1.000 0.965 0.913 0.928 0.010 0.013 0.014 0.012
16 1.000 0.965 0.913 0.928 0.010 0.010 0.011 0.009
DGP4
4 0.989 0.960 0.939 0.942 0.016 0.020 0.025 0.019
8 1.000 0.960 0.940 0.942 0.010 0.010 0.013 0.010
12 1.000 0.960 0.940 0.942 0.010 0.007 0.010 0.006
16 1.000 0.960 0.940 0.942 0.010 0.004 0.008 0.004
DGP5
4 0.919 0.946 0.886 0.901 0.037 0.067 0.076 0.052
8 0.996 0.965 0.905 0.922 0.014 0.018 0.020 0.016
12 1.000 0.965 0.904 0.922 0.010 0.012 0.014 0.011
16 1.000 0.965 0.905 0.922 0.010 0.009 0.012 0.008



Table B.10: Effect of the Location of the Break Point (Model I-a, DGP5)

Coverage rates Lengths
d λ0 = 0.3 λ0 = 0.5 λ0 = 0.7 λ0 = 0.3 λ0 = 0.5 λ0 = 0.7
BLS T = 100
4 0.648 0.691 0.705 0.184 0.175 0.165
8 0.844 0.847 0.866 0.130 0.126 0.111
12 0.911 0.917 0.921 0.106 0.106 0.088
16 0.948 0.952 0.954 0.093 0.093 0.080

T = 300
4 0.722 0.756 0.760 0.168 0.164 0.150
8 0.860 0.889 0.882 0.105 0.106 0.092
12 0.915 0.931 0.925 0.081 0.082 0.069
16 0.940 0.949 0.948 0.067 0.066 0.058
sup T = 100
4 0.839 0.859 0.862 0.323 0.285 0.276
8 0.915 0.921 0.925 0.161 0.147 0.142
12 0.942 0.949 0.951 0.099 0.094 0.089
16 0.956 0.960 0.961 0.071 0.069 0.063

T = 300
4 0.916 0.926 0.923 0.316 0.276 0.276
8 0.944 0.949 0.947 0.136 0.123 0.127
12 0.953 0.958 0.956 0.080 0.074 0.075
16 0.960 0.962 0.961 0.056 0.052 0.051
avg T = 100
4 0.754 0.750 0.781 0.265 0.229 0.230
8 0.840 0.827 0.851 0.136 0.121 0.124
12 0.867 0.861 0.876 0.092 0.082 0.084
16 0.883 0.879 0.889 0.072 0.064 0.065

T = 300
4 0.874 0.874 0.882 0.284 0.240 0.252
8 0.902 0.901 0.907 0.128 0.112 0.122
12 0.914 0.909 0.918 0.082 0.071 0.076
16 0.919 0.915 0.922 0.061 0.052 0.056
exp T = 100
4 0.752 0.774 0.786 0.257 0.227 0.221
8 0.848 0.853 0.861 0.127 0.116 0.113
12 0.885 0.886 0.890 0.081 0.076 0.072
16 0.903 0.904 0.906 0.059 0.056 0.052

T = 300
4 0.877 0.884 0.887 0.271 0.235 0.239
8 0.907 0.916 0.915 0.115 0.105 0.109
12 0.920 0.925 0.926 0.070 0.065 0.065
16 0.926 0.929 0.932 0.050 0.046 0.046



Table B.11: Effect of the Location of the Break Point (Model I-b, DGP5)

Coverage rates Lengths
d λ0 = 0.3 λ0 = 0.5 λ0 = 0.7 λ0 = 0.3 λ0 = 0.5 λ0 = 0.7
BLS T = 100
4 0.657 0.666 0.665 0.220 0.221 0.221
8 0.892 0.890 0.886 0.086 0.086 0.087
12 0.975 0.973 0.976 0.049 0.049 0.049
16 0.995 0.996 0.997 0.035 0.035 0.035

T = 300
4 0.778 0.788 0.779 0.185 0.185 0.187
8 0.919 0.914 0.923 0.056 0.055 0.056
12 0.971 0.965 0.968 0.028 0.028 0.028
16 0.990 0.989 0.989 0.019 0.019 0.019
sup T = 100
4 0.846 0.838 0.851 0.359 0.352 0.362
8 0.924 0.921 0.927 0.112 0.115 0.116
12 0.961 0.960 0.959 0.056 0.056 0.057
16 0.968 0.969 0.968 0.041 0.042 0.042

T = 300
4 0.908 0.914 0.909 0.312 0.297 0.309
8 0.942 0.944 0.938 0.077 0.074 0.075
12 0.954 0.955 0.950 0.045 0.045 0.045
16 0.957 0.958 0.955 0.034 0.034 0.034
avg T = 100
4 0.801 0.794 0.793 0.319 0.309 0.318
8 0.872 0.869 0.874 0.123 0.123 0.125
12 0.907 0.903 0.908 0.067 0.066 0.068
16 0.915 0.914 0.915 0.047 0.047 0.048

T = 300
4 0.892 0.894 0.890 0.302 0.286 0.299
8 0.920 0.918 0.915 0.102 0.096 0.101
12 0.929 0.927 0.926 0.058 0.056 0.058
16 0.931 0.930 0.929 0.043 0.041 0.043
exp T = 100
4 0.782 0.776 0.777 0.298 0.288 0.298
8 0.869 0.873 0.876 0.096 0.098 0.100
12 0.910 0.917 0.915 0.051 0.051 0.052
16 0.916 0.928 0.926 0.038 0.038 0.038

T = 300
4 0.883 0.885 0.880 0.273 0.259 0.271
8 0.918 0.920 0.913 0.074 0.072 0.073
12 0.931 0.932 0.925 0.044 0.044 0.044
16 0.933 0.937 0.930 0.033 0.033 0.033



Table B.12: Effect of the Location of the Break Point (Model II-a, DGP5)

Coverage rates Lengths
d λ0 = 0.3 λ0 = 0.5 λ0 = 0.7 λ0 = 0.3 λ0 = 0.5 λ0 = 0.7
BLS T = 100
4 0.659 0.772 0.817 0.088 0.070 0.062
8 0.878 0.931 0.941 0.057 0.049 0.043
12 0.940 0.966 0.974 0.048 0.044 0.040
16 0.967 0.981 0.985 0.046 0.042 0.037

T = 300
4 0.696 0.815 0.850 0.072 0.055 0.046
8 0.896 0.934 0.951 0.039 0.032 0.025
12 0.946 0.971 0.973 0.031 0.024 0.021
16 0.966 0.980 0.982 0.026 0.022 0.019
sup T = 100
4 0.811 0.869 0.884 0.242 0.168 0.137
8 0.912 0.942 0.940 0.102 0.068 0.054
12 0.939 0.957 0.953 0.055 0.038 0.031
16 0.953 0.962 0.957 0.038 0.027 0.023

T = 300
4 0.904 0.934 0.936 0.265 0.166 0.138
8 0.950 0.959 0.957 0.096 0.060 0.051
12 0.961 0.966 0.964 0.050 0.032 0.027
16 0.965 0.967 0.965 0.032 0.021 0.017
avg T = 100
4 0.695 0.737 0.770 0.188 0.129 0.113
8 0.797 0.819 0.827 0.088 0.057 0.055
12 0.821 0.837 0.842 0.056 0.035 0.037
16 0.834 0.845 0.849 0.042 0.026 0.029

T = 300
4 0.843 0.865 0.884 0.241 0.142 0.133
8 0.893 0.898 0.908 0.094 0.054 0.051
12 0.904 0.908 0.913 0.051 0.031 0.030
16 0.910 0.910 0.915 0.035 0.022 0.022
exp T = 100
4 0.701 0.767 0.790 0.175 0.119 0.098
8 0.818 0.853 0.852 0.073 0.048 0.039
12 0.846 0.871 0.868 0.040 0.028 0.024
16 0.862 0.878 0.874 0.028 0.021 0.018

T = 300
4 0.850 0.885 0.891 0.220 0.136 0.115
8 0.905 0.916 0.916 0.079 0.049 0.042
12 0.917 0.926 0.922 0.041 0.027 0.022
16 0.922 0.929 0.924 0.027 0.018 0.015



Table B.13: Effect of the Location of the Break Point (Model II-b, DGP5)

Coverage rates Lengths
d λ0 = 0.3 λ0 = 0.5 λ0 = 0.7 λ0 = 0.3 λ0 = 0.5 λ0 = 0.7
BLS T = 100
4 0.695 0.885 0.952 0.081 0.059 0.046
8 0.987 1.000 1.000 0.035 0.030 0.030
12 1.000 1.000 1.000 0.030 0.030 0.030
16 1.000 1.000 1.000 0.030 0.030 0.030

T = 300
4 0.803 0.919 0.961 0.061 0.037 0.027
8 0.985 0.996 0.999 0.020 0.014 0.011
12 0.999 1.000 1.000 0.011 0.010 0.010
16 1.000 1.000 1.000 0.010 0.010 0.010
sup T = 100
4 0.829 0.917 0.943 0.246 0.113 0.073
8 0.960 0.975 0.967 0.042 0.025 0.018
12 0.967 0.975 0.968 0.020 0.012 0.010
16 0.967 0.975 0.968 0.012 0.010 0.010

T = 300
4 0.923 0.946 0.960 0.219 0.067 0.044
8 0.965 0.965 0.969 0.026 0.018 0.015
12 0.966 0.965 0.969 0.016 0.012 0.010
16 0.966 0.965 0.969 0.012 0.009 0.007
avg T = 100
4 0.735 0.786 0.845 0.202 0.096 0.077
8 0.858 0.837 0.867 0.048 0.028 0.028
12 0.863 0.837 0.867 0.030 0.018 0.020
16 0.863 0.837 0.867 0.024 0.013 0.015

T = 300
4 0.882 0.886 0.917 0.229 0.076 0.060
8 0.919 0.905 0.924 0.035 0.020 0.018
12 0.921 0.904 0.923 0.019 0.014 0.013
16 0.921 0.905 0.923 0.015 0.012 0.012
exp T = 100
4 0.726 0.823 0.866 0.170 0.076 0.052
8 0.876 0.880 0.892 0.031 0.019 0.014
12 0.883 0.880 0.892 0.016 0.010 0.009
16 0.882 0.880 0.892 0.010 0.009 0.009

T = 300
4 0.878 0.901 0.925 0.171 0.052 0.036
8 0.928 0.922 0.933 0.023 0.016 0.014
12 0.931 0.922 0.933 0.015 0.011 0.009
16 0.931 0.922 0.933 0.011 0.008 0.007



Appendix C

Table C.14: Empirical results for model (23) in which γ sustains a structural change

series: yt, p
oil
t

estimated break date : 2008Q3
cointegration test with a break : 0.048
cointegration test without a break : 0.172∗∗

series: ct, p
oil
t

estimated break date : 2008Q4
cointegration test with a break : 0.033
cointegration test without a break : 0.117∗

series: it, p
oil
t

estimated break date : 2007Q1
cointegration test with a break : 0.046
cointegration test without a break : 0.131∗∗

Note: the superscripts *, **, and *** signify significance at 10%, 5% and 1%, respectively.
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Figure C.1: Confidence sets for a break


