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Abstract

Recent approaches in unit root testing have taken into account the influences of initial
condition, trend, and breaks in data using pre-testing and union of rejection testing strategies
based on obtained information. This paper proposes an extension of the Harvey et al. (2012b)
approach to address the case of uncertainty over the initial condition. It has been shown that
this approach has low power under a large initial condition because it includes GLS-based
tests. Therefore, the efficiency of some ADF-type unit root tests with breaks under various
magnitudes of initial condition will be investigated, and new decision rules will be proposed.
Additionally, the modifications of the proposed algorithm, using pre-testing for the trend co-
efficient and the possible presence of multiple structural trend breaks, are also discussed. The
asymptotic behaviors of all tests are analyzed under both a local-to-unity representation of the
autoregressive root and a local-to-zero representation of trend and breaks magnitudes. The
proposed tests show good asymptotic and finite sample properties under various magnitudes
of nuisance parameters.
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1 Introduction

It is well known that in unit root testing it is necessary to take into account the possible presence of
structural breaks in the data, and starting with the work of Perron (1989), considerable attention
has been paid to the impact of these breaks on unit root testing.

Recent papers, Harvey et al. (2012b) (hereafter HLT12) and Harvey et al. (2013b) (hereafter
HLT13), address the problem of uncertainty surrounding the presence and dating of structural
breaks in the context of unit root testing. An intuitive approach is to use a pre-test to detect the
break and then calculate the test statistic with or without this break. However, these methods are
only effective in the case of a fixed or zero trend break, in which finite samples produce ”valleys” in
the power functions of the tests; the power is high for a very small break, but declines rapidly with
the increasing magnitude of the break until it increases again. HLT12 proposed two strategies to
address this issue. The first strategy recommends always performing tests with the break, but with
adaptive critical values. The second approach proposes using the union of rejection of two tests,
taking into account scenarios with and without break tests. Additionally, the authors developed
a local asymptotic theory for existing and new procedures by using the local-to-zero behavior of
the trend break. HLT13 proposed an alternative approach in which the test statistic is computed
similarly to Zivot and Andrews (1992) (hereafter ZA), by minimizing the sequence of test statistics
for all possible break dates using GLS-detrended data.

However, in the context of unit root testing with an allowance for a break, the issue of the
impact of the initial condition is rarely discussed. It can only be found in two studies: Liu and
Rodrı́guez (2006) and Rodrigues (2013). In the former work, the authors developed tests based
on GLS-detrending when the initial condition was drawn from the unconditional distribution. In
the latter work, the author introduces a test with recursive detrending. The obtained test evidently
has lower power than the GLS-based test under zero initial condition, but its power falls much
more slowly with an increasing initial condition. This study shows that the OLS-based test (the
ZA test) has increasing power with an increasing initial condition. However, the author considers
the data generating process with no break. Harvey et al. (2013a) show that the t-statistic for
hypothesis testing for a unit root in an OLS-regression will spuriously reject the null hypothe-
sis with a probability approaching one when the true break fraction is smaller than 2/3 and the
break occurs under the null (in contrast to ZA, where no break is present under the null). This
demostrates that the ZA test cannot be used for statistical inference. Therefore, in this paper we
examine the behavior of the modifications of the ZA proposed by Harvey et al. (2013a) and Har-
vey and Leybourne (2012) under various initial conditions and propose algorithms that are robust
to initial condition and have high power under small initial condition.

If there are multiple structural breaks, Carrion-i-Silvestre et al. (2009) (hereafter CKP) pro-
posed estimating the number of breaks in series in the first step (using a procedure proposed by
Kejriwal and Perron (2010)), and then, based on this information, calculating a unit root test
statistic, taking into account the number of breaks. This approach, however, as shown in HLT13,
results in zero power even with a moderate break magnitude, especially if the break magnitudes
have opposite signs. In this paper, we consider possible modifications for solving this problem and
discuss their limitations.

The paper is organized as follows: In Section 2 we describe the model with a (local-to-zero)
break in trend and seven test statistics considered in the paper. In Section 3 we describe the
procedures proposed in HLT12. The investigation of the impact of the initial condition on these
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tests and the procedures of HLT12 is performed in Section 4. More specifically, we analyze the
influence of the initial condition on the so-called robust tests for a trend break in Section 4.1. In
Section 4.2, the asymptotic behaviors of unit root tests are compared under various magnitudes
of break and initial conditions, and in Section 4.3, we propose the modification of the HLT12
procedures and investigate the asymptotic behaviors of these modifications. Further extensions
with the corresponding limitations are considered and discussed in Section 5. Section 6 provides
conclusions. The set of Ox programs for calculating all test statistics is available on the author’s
web page https://sites.google.com/site/antonskrobotov/.

2 The Model

Consider the data generating process (DGP) in the case of a break in trend to be

yt = µ+ βt+ γTDTt(λ0) + ut, t = 1, . . . , T, (1)

ut = ρTut−1 + εt, t = 2, . . . , T, (2)

where DTt(λ0) = (t − bλ0T c)I(t > bλ0T c), I(·) is the indicator function, and the trend break
occurs at time bλ0T c (λ0 is the corresponding break fraction) if the break magnitude γT 6= 0. It is
assumed that the true break fraction λ0 is unknown but belongs to the range Λ = [λL, λU ], where
0 < λL < λU < 1, λL and λU are trimming parameters.1

The autoregressive parameter in (2) is taken to be ρT = 1 − c/T , where c ≥ 0. Our purpose
is testing the null hypothesis of a unit root, H0 : ρT = 1 which corresponds to c = 0, against the
local alternative, H1 : ρT < 1 which corresponds to 0 < c < ∞, without any assumption about
whether a break is present in the data or not. We consider the break magnitude as local-to-zero,
that is γT = κωεT

−1/2, as in HLT12 and HLT13, because such a representation provides a better
approximation of the finite sample behavior in contrast to the fixed representation γT = γ.2

A large number of recent papers have investigated the behavior of unit root tests under various
initial conditions (see Elliott (1999), Muller and Elliott (2003), Elliott and Muller (2006), Harvey
and Leybourne (2005), Harvey and Leybourne (2006) and Harvey et al. (2009b), inter alia).
In our paper, in contrast to HLT2012 and HLT2013, we consider asymptotically non-negligible
initial conditions according to the following assumption:

Assumption 1 The initial condition u1 is defined as u1 = ξ = α
√
ω2
ε/(1− ρ2

T ), where ρT =
1 − c/T , c > 0. For c = 0, under H0, the initial condition, without loss of generality, can be
set to be zero, u1 = 0, due to the exact similarity of the tests to the initial condition in this
case.

In Assumption 1, α controls the magnitude of the initial condition relative to the innovation
long-run variance ω2

ε . The form given for u1, allows the initial condition to be either random and
of Op(T

1/2), or fixed and of O(T 1/2), depending on whether σ2
α > 0 or σ2

α = 0, respectively.
The linear process εt is assumed to satisfy the standard assumptions (see Phillips and Solo

(1992)):

1It should be noted that in DGP (1)-(2) the trend break is allowed under both the null and alternative hypothesis.
Although some tests considered in this study (which are based on the minimization of the test statistics) are con-
structed under the assumption of the absence of a trend break under the null unit root hypothesis we consider their
behavior under non-zero break.

2Note that under a fixed magnitude of a break, the results correspond to large values of κ.
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Assumption 2 Let

εt = γ(L)et =
∞∑
i=0

γiet−i,

with γ(z) 6= 0 for all |z| ≤ 1 and
∑∞

i=0 i|γi| < ∞, where et is the martingale difference
sequence with conditional variance σ2

e and supt E(e4
t ) < ∞. The short-run and long-run

variances of εt are defined as σ2
ε = E(ε2

t ) and ω2
ε = limT→∞ T

−1E
(∑T

t=1 εt

)2

= σ2
eγ(1)2,

respectively.

In this paper we analyze the behavior of seven tests. For all tests considered below, the break
date is assumed to be unknown.

For the break fraction estimator, we use the hybrid estimator proposed by Harvey and Ley-
bourne (2013):

λ̂Dm = arg min
λ∈Λ,ρ̄∈Dm

S(ρ̄, λ), (3)

where S(ρ̄, λ) is the sum of the squared residuals in the regression

yρ̄ = X ρ̄ (λ) β + uρ̄, (4)

where yρ̄ = [y1, (1− ρ̄L) y2, . . . , (1− ρ̄L) yT ]′, X ρ̄ (λ) = [x1, (1− ρ̄L)x2, . . . , (1− ρ̄L)xT ]′, xt =
(1, t, DTt(λ))′, and Dm = {ρ′1, ρ′2, . . . , ρ′m−1, 1} is the m element set, where |ρ′i| < 1 for all i and,
without loss of generality,−1 < ρ′1 < ρ′2 < · · · < ρ′m−1 < 1. This estimator shows a better proper-
ties that the estimator based on the first-differenced regression as in Harris et al. (2009) (hereafter
HHLT), especially under moderate break magnitude and large initial condition (see Supplemen-
tary Appendix, Section 1). Also, the estimator (3) will still be consistent (under a fixed break
magnitude), because it use the estimation of the quasi-differencing regressions, see Carrion-i-
Silvestre et al. (2009). The limiting distribution for λ̂Dm follows straightforwardly from HLT12
(Theorem 3 (i, iii)) and continuous mapping theorem (CMT) with GLS-detrending parameters
equal to c̄λ = {150, 120, 90, 60, 30, 15, 7.5, 3.75, 0} to be consistent with finite sample simulations
of Section 4.3, where we use Dm = {0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.975, 1} and T = 150.

In the regressions below ρ̄T = 1− c̄/T for GLS-based tests without break and ρ̄T = 1− c̄λ/T
for GLS-based tests with break.3 In our paper we consider the following tests:

1. The ADF-OLSt test is based on the t-statistic for testing ρ = 1 in the regression

ût = ρût−1 +

p∑
j=1

φj∆ût−j + et, t = p+ 2, . . . , T,

where ût = yt − z′tθ̂ are the residuals from the OLS regression of yt on zt = (1, t)′.

2. The ADF-GLSt test is based on the t-statistic for testing ρ = 1 in the regression

ũt = ρũt−1 +

p∑
j=1

φj∆ũt−j + et, t = p+ 2, . . . , T,

where ũt are the residuals from the OLS regression of yc̄ = [y1, y2− ρ̄Ty1, . . . , yT − ρ̄TyT−1]′

on Zc̄ = [z1, z2 − ρ̄T z1, . . . , zT − ρ̄T zT−1]′, zt = (1, t)′.

3We use a single value of c̄λ, that does not depend on break fraction estimator for simplicity as in HLT13. See also
Section 4.2.
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3. The ADF-OLStb(λ̂Dm) test is based on the t-statistic for testing ρ = 1 in the regression

ûtbt = ρûtbt−1 +

p∑
j=1

φj∆û
tb
t−j + et, t = p+ 2, . . . , T, (5)

where ûtbt = yt−z′tθ̂ are the residuals from the OLS regression of yt on zt = (1, t, DTt(λ̂
Dm))′.

4. The ADF-GLStb(λ̂Dm) test is based on the t-statistic for testing ρ = 1 in the regression

ũtbt = ρũtbt−1 +

p∑
j=1

φj∆ũ
tb
t−j + et, t = p+ 2, . . . , T, (6)

where ũtbt are the residuals from the OLS regression yc̄ = [y1, y2 − ρ̄Ty1, . . . , yT − ρ̄TyT−1]′

on Zc̄ = [z1, z2 − ρ̄T z1, . . . , zT − ρ̄T zT−1]′, zt = (1, t, DTt(λ̂
Dm))′.

5. The MDF-OLSρ = infλ∈Λ ADF-OLSρ (λ) test, where ADF-OLSρ (λ) is the normalized
bias (coefficient) test, T (ρ̂− 1)/(1−

∑p
j=1 φj), in the regression (5).

6. The MDF-OLSmax = max (MDF-OLS,MDF-OLS ′) test, with

MDF-OLS = inf
λ∈Λ

ADF tb-OLS (λ)

and
MDF-OLS ′ = inf

λ∈Λ
ADF tb-OLS (λ)′ ,

whereADF tb-OLS (λ) is the t-statistic for testing ρ = 1 in regression (5), andADF tb-OLS (λ)′

is also the t-statistic for testing ρ = 1 in regression (5), but based on time-reverse data, i.e.
the set {yT−t+1}Tt=1 should be used instead of {yt}Tt=1.

7. TheMDF-GLS = infλ∈Λ ADF
tb-GLS (λ) test, where theADF tb-GLS (λ) is the t-statistic

for testing ρ = 1 in regression (6).

Lag length is selected by the modified Akaike information criterion (MAIC), proposed by Ng and
Perron (2001), with the modification from Perron and Qu (2007).

The first test, ADF-OLSt, is the Augmented Dickey-Fuller test with trend. The second test,
ADF-GLSt, is the test proposed by Elliott et al. (1996), also with trend. In Harvey et al. (2009b)
these two test are compared, and it was determined that the first test is effective under large initial
conditions while the second test is effective under small initial conditions, and its power decreases
rapidly with an increasing initial condition. The ADF-GLStb(λ̂Dm) test, with a break date es-
timator based of first differences, was proposed in HHLT, where the authors showed that under
fixed break magnitude this test has the same limiting distribution as in the case with a known
break date. Similar properties hold for the ADF-OLStb(λ̂Dm) (because of superconsistent break
fraction estimator λ̂Dm , see Kim and Perron (2009)). In Section 4 we compare these tests focusing
on the magnitudes of the initial condition and local break in trend. The MDF-GLS test was pro-
posed by Perron and Rodrı́guez (2003) and was applied to the case of multiple structural breaks
in HLT13. It turned out that the power of this test is more robust to the magnitude of a local break
in trend than the other tests considered, even in finite samples.
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Lets discuss the OLS-detrended tests, MDF-OLS, MDF-OLSρ and MDF-OLSmax, in
greater detail. The first test, the ZA test, would wrongly reject the null hypothesis with a proba-
bility approaching unity in the limit when the true break fraction is smaller than 2/3 and the break
is present under the null hypothesis (in contrast to ZA, where no break is present under the null
hypothesis, see Harvey et al. (2013a)4). For a reasonable sample size and break magnitude, these
size distortions occur if the break is in the first half of the sample, and Harvey et al. (2013a) use
this fact. They propose to use the maximum of two statistics, with original and time reversed data,
i.e. the MDF-OLSmax test. The obtained test is robust in the sense that it chooses between
MDF-OLS and MDF-OLS ′ on the basis of which statistics are most favorable to the null hy-
pothesis, eliminating the possibility of the size of the test being higher than the nominal level (this,
however, holds only in finite samples, not asymptotically). Harvey and Leybourne (2012) consid-
ered the asymptotic behavior of the MDF-OLSρ test under a local-to-unit root alternative and
also allowing for a local-to-zero break magnitude, γT = κωeT

−1/2. The asymptotic size of this
test never exceeds the nominal level, except in cases of very small breaks (small κ). In comparison
with the asymptotic size of the test based on the conventional t-statistics, the MDF-OLSρ does
not have size distortions under a large (fixed) break magnitude, if the true break fraction lies within
Λ with λL > 0.033 and standard significance levels are used.

3 Procedures proposed by HLT12

In the HHLT and CKP studies, the following procedures were proposed. To determine whether or
not a break is present in the series, the researcher should test its significance with either the Har-
vey et al. (2009a) test, tHLT , (or use a modified estimator of the break date according to HHLT) or
the Perron and Yabu (2009) test,tPY ,5 and then, based on the obtained information about the pres-
ence/absence of a break, implement the unit root test with or without a break. When the structural
breaks are either large or very small, the power of these procedures is very high. However, consid-
erable power loss is observed in the intermediate range called the power “valley”. Power “valleys”
occur because, for the range of local break magnitudes, the break is large enough to decrease the
power of tests considerably, and, at the same time, is too small to be reliably detected by dating
and detection procedures. To the left of this range, the structural breaks are so small that they
have no influence on the power of the test without a break. To the right of this range, they are
easily detected, so the power increases as the unit root test with a break is performed. Such power
“valleys” can be mitigated by always using a unit root test with a break, but its power will be sig-
nificantly smaller than with the tests from HHLT and CKP in areas with structural breaks that
are too small or too large. The authors suggest two alternative procedures that help mitigate the
phenomenon of the power “valley”.

The first procedure is based on the ADF-GLStb(λ̃) statistic for unit root testing with GLS-
detrended data and an allowance for a break (with a break fraction estimator λ̃ as given in (??)
which minimizes the sum of squared residuals with the first differenced model). Let sκ denotes a
pre-test for a break and cvκ be the corresponding critical value. Then the adaptive procedure (the

4See also Vogelsang and Perron (1998), where the model with innovation breaks is investigated.
5We do not provide the exact formulas for the tPY and tHLT tests in order to save space. See a brief description in

HLT12, Section 3.
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so-called test with adaptive critical values) is

A(sκ) = ADF-GLStb(λ̃) with critical value

cvconsvtb if sκ < cvκ

cvλ̃tb if sκ ≥ cvκ
, (7)

where cvconsvtb is the conservative critical value, and cvλ̃tb is the critical value for the known break
date case obtained in HHLT. In other words, if the structural break is detected, the usual test
statistic should be used to test a unit root null hypothesis with a break with the critical value
for the known break date, and if the structural break is not detected, the same test statistic is
used, but with the conservative critical value cvconsvtb (because under zero and small breaks the
ADF-GLStb(λ̃) test will be oversized).

The second procedure, “the adaptive union of rejections ofADF-GLSt andADF-GLStb(λ̃)”,
attempts to capture some of the power associated with the ADF-GLSt when no break is present,
while at the same time excluding the possibility of only implementing the ADF-GLSt when a
break is present. Also, this procedure uses extra power when a break is present in the data (with
the help of pre-testing):

U(sκ) =


Reject H0 if {ADF-GLSt < mξcvt or

ADF-GLS(λ̃) < mξcv
consv
tb

}
if sκ < cvκ

Reject H0 if
{
ADF-GLS(λ̃) < cvλ̃tb

}
if sκ ≥ cvκ

. (8)

where cvt is the critical value of the ADF-GLSt test and mξ is some scaling constant (mξ > 1)
designed to prevent the problem of oversizing and is evaluated under H0 in cases where there is
no break in trend. As the authors’ simulations show, the A(sκ) procedure is less sensitive to the
magnitude of the break, and the U(sκ) procedure provides much higher power for zero or small
breaks due to some power loss for the intermediate magnitudes of a break. Both procedures help
to mitigate the effect of power “valleys”.

4 The impact of the initial condition

In this section we investigate the asymptotic behavior of all considered tests under various initial
conditions. Note that if the initial condition is set as in Assumption 1, then in all limiting distri-
butions under the local alternative the Ornstein-Uhlenbeck process, Wc(r) =

∫ r
0
e−(r−s)cdW (s) is

replaced by

Kc(r) =

α(e−rc − 1)(2c)−1/2 +Wc(r), c > 0

W (r), c = 0
, (9)

where W (r) is the standard Wiener process (see Harvey et al. (2009b)). Results were obtained
using simulations of the limiting distributions of test statistics, approximating the Wiener process
using i.i.d.N(0, 1) random variates and with integrals approximated by normalized sums of 1,000
steps, with 30,000 replications. The limiting distributions for GLS-based tests and also for robust
tests can be found in HLT12 and HLT13, under the local behavior of the autoregressive root and
the local behavior of the break magnitude, and are not presented here for the sake of brevity. The
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limiting distribution of theMDF-OLSρ test was obtained from Harvey and Leybourne (2012), the
limiting distribution of the ADF-OLSt is provided in Lemma 1 of Section 4.2. The limiting dis-
tribution of the ADF-OLStb(λ̂Dm) is similar to HLT12 except for the GLS-detrended continuous
time residual process should be replaced by corresponding OLS-detrended process (as in Harvey
and Leybourne (2012, Theorem 1)). The limiting distribution of MDF-OLSmax can be obtained
in the same manner as in Harvey and Leybourne (2012) under local trend break by applying CMT
and arguments provided by Zivot and Andrews (1992). Formal expressions of these results are
not presented for the sake of brevity. Also note that we used the trimming parameters λL and λU ,
equal to 0.15 and 0.85 respectively. In all simulations, the break fraction is 0.5.

We first investigate the effects of initial conditions on the robust tests from Perron and Yabu
(2009) and Harvey et al. (2009a). We then compare theMDF-OLSρ,MDF-OLSmax,ADF-OLStb(λ̂Dm),
andADF-GLStb(λ̂Dm),MDF-GLS tests under various magnitudes of local trend break and ini-
tial conditions to determine the effective test in each particular case. After that, we propose modi-
fications to the HLT12 procedures described in Section 3. All necessary critical values and scaling
constants are provided in Table 1. The program codes for the simulations and for obtaining critical
values are available upon request.

4.1 The influence of the initial condition on the robust tests for trend
break

Figures 1-4 show the local power of the tHLT and tPY tests for c ∈ {5, 10, 20, 30} and for α ∈
{−6,−4,−2,−1, 0, 1, 2, 4, 6} with κ ∈ (0, 10). The results with a negative κ are symmetric with
respect to α. In general, both tests behave similarly. For a small c, the mean-reversion effect from
the initial value is slow enough, so this mean-revering part of the process produces the effect of
a breaking trend. This is best seen when κ = 0 and the test wrongly rejects the hypothesis of no
break. Explanation of this phenomenon is similar to Harvey et al. (2008). The tHLT and tPY tests
use the difference h ≡ yT −ybλ̂T c−(1− λ̂)(yT −y1) for estimating the trend break parameter where

λ̂ is the break date estimator equal to argument of supremum of the test statistic under H0 over all
possible break dates (see Harvey et al. (2009a) for details). Consider the case of κ ≥ 0. If κ = 0,
then the very negative initial condition leads to a large value for (yT − y1), which makes h very
negative. This leads to a rejection the null hypothesis. If the κ increases, the value of yT − ybλ̂T c
becomes larger, which make the value of h close to zero, and therefore the test statistic will be
insignificant. With a further increase of κ, the value of h increases, which often leads to rejecting
the null hypothesis. This result is clearly visible in Figure 1(a). Consider the case of large positive
initial condition. Now the value of (yT − y1) can be negative, which makes the value of h under
κ = 0 strongly positive. If the κ increases, the rejection rate also increases due to the increases in
yT − ybλ̂T c. Also note that if we compare our results with results of robust tests for trend in Harvey
et al. (2008), we found that our results are symmetric around α in comparison to Harvey et al.
(2008), as the value of (yT −y1) is included in the numerator of the test statistics with the opposite
sign.

For a larger c, the oversizing is less pronounced and often the break is not detected under κ = 0.
This occurs because, for larger c, the larger |α| values would be needed to offset the undersizing
in tests when α = 0. The negative influence on power in this case is observed only when α and κ
have opposite signs. If the signs are the same, then the power is higher than in the case of α = 0.
Furthermore, for c = 30, the tests even have well-controlled sizes (though still conservative).
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Thus, although the tHLT and tPY tests cannot be used for a small κ, they can serve as indicators
of the large magnitude of a local break even for a large α. In other words, they can be used as pre-
tests similar to HLT12.

4.2 The influence of the initial condition on the unit root tests with break

Now consider the behavior of theMDF-OLSρ,ADF-OLStb(λ̂Dm),ADF-GLStb(λ̂Dm) andMDF-GLS
tests under various κ andα. For illustrating purposes, we also provide the results for theMDF-OLS
test (ZA-test),6 although this test is invalid under large values of κ.

Figures 5 and 6 show the asymptotic, size-adjusted local power for c = 20 and c = 30, respec-
tively, and for α ∈ {−6,−4,−2,−1, 0, 1, 2, 4, 6} with κ ∈ (0, 15). More specifically, for the given
break fraction λ0, we calculate the size (c = 0) of all tests considered in the previous sections for
all κ ∈ (0, 15). Note that the size is not changed for different α, because under H0 all tests are
invariant to initial condition. Let κ∗ denote κ, which results in the test’s maximum size (the max-
imum sizes are provided in Table 1). The power curves are obtained by adjusting their size, i.e. by
scaling all critical values of the specific test so that its size is equal to 0.05 for κ = κ∗. The same
scaling is used for all values of κ (i.e. the size will be always below 0.05 for all κ 6= κ∗).

Also, in contrast to e.g., HHLT, the value of the c̄λ parameter for GLS-based tests is chosen
not for each possible location of a break, but as the average of these values (since these values
differ very little from each other under the assumption of a local trend break), following HLT13. In
other words, we use c̄λ = 17.6, proposed in HLT13, for all GLS-based tests.

Based on the figures, it can be seen that for α = 0, the MDF-GLS and ADF-OLStb(λ̂Dm)
are effective. However, for |α| = 1, the power curve of the MDF-GLS is at the same level as the
MDF-OLSρ, and as the absolute value of α increases, the power of the MDF-GLS continues
to fall. For a large |α|, it will be zero, even with a moderate κ (for a κ close to zero, the power
of GLS-based tests will be somewhat higher because the mean-reverting effect is interpreted as
a break). Similar behavior occurs with the ADF-GLStb(λ̂Dm) test, although the MDF-GLS is
more robust under small and moderate initial conditions.

For moderate and even for large initial conditions, the ADF-GLStb(λ̂Dm) seems to be the
somewhat robust. The tests whose power increase by increasing the initial condition areADF-GLStb(λ̂Dm)
andMDF-OLS, but the latter is seriously oversized if the break is occurs in the second part of the
sample, and therefore cannot be used. Its modification,MDF-OLSmax, fixes this issue. However,
for large |α|, the power of the test will be very low because the test includes MDF-OLS ′ with
time-reversed data, so that the initial value becomes the last value, and the test will rarely reject
the null (for a moderate α, this test has reasonably good power, but is strongly dominated by the
MDF-OLSρ test. See Supplementary Appendix, Section 1). For the ADF-OLStb(λ̂Dm), the
power decrease are observed for large |α| and small κ, probably due to an incorrect estimation
of the break fraction λ̂Dm (the mean-reverting effect is estimated as a spurious break). This test
would be effective under a large initial condition except for these power decreases for small values
of κ. For small breaks, we could use the MDF-OLS (the ZA test) when the break is small and
is not detected by the tHLT and tPY tests. We found that for different break date locations and
various types of weak dependence on errors that theMDF-OLS will be oversized when the break

6We omit the results for the MDF-OLSmax because this test is not effective for any of the the cases examined,
and its power falls as the initial condition is increasing.
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is detected with a probability of one by the robust tests7. In this case theADF-OLStb(λ̂Dm) could
be used because it is correctly sized. If the break is not detected with a nonzero probability, then
MDF-OLS will be correctly sized.

We conclude that, for small initial conditions, the MDF-GLS should be used, and for large
initial conditions, the combination ofMDF-OLS andADF-OLStb(λ̂Dm) should be used, depen-
dent on the robust tests for break. Also, for large initial conditions, the test proposed in HLT12
(and also in HLT13) and described in Section 3 has very low power, so its implementation in em-
pirical applications becomes problematic. Furthermore, we propose modifications to these tests
with uncertainty over the initial condition.

4.3 The modification of HLT approach

Based on the obtained results, it’s obvious that, even for small initial conditions, the power of the
HLT12 procedures will fall significantly. Therefore, in this subsection we propose modifications to
theA(sκ) and U(sκ) tests that are robust to large initial conditions and at the same time save high
power for small initial conditions. In this case, we need a pre-test for the initial condition similar
to Harvey et al. (2012a). However, a pre-test constructed similarly to Harvey et al. (2012a) as
the (weighted) difference between MDF-GLS and ADF-OLStb(λ̂Dm) is not appropriate in this
context due to power decrease for the latter under small κ. So, we follow the approach of Harvey
and Leybourne (2005) and Harvey and Leybourne (2006), and the initial condition estimator, |α|,
is constructed as

|α̂| = |y1 − d̂1|
σ̂

, (10)

where d̂1 is the fitted value of the deterministic function in (1) at time t = 1, using the break
fraction estimator in (3), and σ̂ is the corresponding standard deviation estimator of the error term
ut. The |α̂| is consistent under a fixed alternative but is not consistent under a local alternative,
which we see in the following lemma.

Lemma 1 Let {yt} be generated as (1) and (2) and Assumptions 1 and 2 are held. Then
under ρT = 1− c/T , 0 ≤ c <∞

|α̂| ⇒ |Ktb
c (0, λ0, κ)|√∫ 1

0
Ktb
c (r, λ0, κ)2dr

,

where Ktb
c (r, λ0, κ) is the continuous time residuals process from the regression of Kc(r) +

κ(r − λ0)(r > λ0) onto the space spanned by {1, r, (r − λ̂Dm)I(r > λ̂Dm)}, and the limiting
distribution for λ̂Dm follows straightforwardly from HLT12.

The proof of this lemma comes from Harvey and Leybourne (2005). Note that although the
|α̂| is not a consistent estimator for |α| under a local alternative, it can still be useful for obtaining
information about a very large |α|. In other words, the large value of |α̂| might be associated with
large values of |α|. We implement the simple heuristic rule that |α̂| > 1 indicates a large initial

7See Supplementary Appendix, Section 2. In our simulations, for lambda0 = 0.2 the serious size distortions
never occur if the break still does not detected, and for lambda0 = 0.15 the size never exceeds 40%. But similar size
distortions could occur also for strongly negative MA component in DGP. Also the size distortions decrease if the
sample size T increase.
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condition. The reason is that for |α| > 1, the power of the test that is effective under small initial
conditions, MDF-GLS, ceases to be higher than power of other tests.8 Asymptotic results based
on the distribution in Lemma 1 are represented in Figure 7 for various c and κ. It can be seen
that this test will be very liberal (and size distortion decreases with an increasing c), but it can
still be used under uncertainty over the initial condition for the procedures described below, as a
risk-averse strategy. Note that the non-monotonic power for the case of κ = 5 is a consequence
of an incorrect estimation of the break date, as this break is small and the initial condition is large
enough.

Now we can consider the modification of the A(sκ) testing strategy, denoted by A∗(sκ, sα),
where, in all algorithms listed below, sκ and sα denote tests for break and for initial condition,
and cvκ and cvα denote corresponding critical values. Critical values and scaling constants are
provided in Table 2.

Algorithm 1 The modified A∗(sκ, sα) strategy is defined as follows:

1. If sκ ≤ cvκ and sα > cvα, then use the the MDF -OLS test with critical values δξ ×
cvMDF -OLS;

2. If sκ ≤ cvκ and sα ≤ cvα, then use the strategy

Reject H0 if
{
MDF -OLS < δξ ×m1

ξ × cvMDF -OLS

or MDF -GLS < δξ ×m1
ξ × cvMDF -GLS

}
, (11)

wherem1
ξ is the scaling constant for the union of theMDF -OLS andMDF -GLS tests

with conservative critical values.

3. If sκ > cvκ and sα > cvα, then use the ADF -OLStb(λ̂Dm) test with the critical values
δξ×cvADF -OLStb

, where cvADF -OLStb
is the conservative critical value for theADF -OLStb(λ̂Dm);

4. If sκ > cvκ and sα ≤ cvα, then use the strategy

Reject H0 if
{
ADF -OLStb(λ̂Dm) < δξ ×m2

ξ × cvADF -OLStb

or MDF -GLS < δξ ×m2
ξ × cvMDF -GLS

}
, (12)

wherem2
ξ is the scaling constant for the union of theADF -OLStb(λ̂Dm) andMDF -GLS

tests.

In this strategy, δξ is the scaling constant for overall size control.

It should be noted that we use only conservative critical values for all tests calibrated at κ =
0. The reason is that although the size of tests decreases if κ increases, in finite samples for
autocorrelated errors the size is approximately the same for all κ. Thus, the conservative critical
values allow better size control.9

8This decision rule is similar to the rule proposed by Harvey et al. (2010) except that Harvey et al. (2010) used
the trimmed data for estimation of α and the critical value was set to be two. Our approach leads to somewhat better
power properties of the initial condition test.

9The results for cases with liberal critical values for large κ are available on request.
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The basic concepts of this strategy are as follows. Under item 1, there are no reasons to assume
that a break is actually present in the data, but there is evidence in favor of a large initial condition.
Thus, the MDF-OLS (ZA) test is effective. Under item 2 there are reasons to assume that both
the magnitude of a break and the initial condition are large, so the union of rejection, including the
MDF-OLS andMDF-GLS tests should be used. Under item 3, there is evidence of both a large
magnitude of a break in trend and a large initial condition, so in this case the ADF-OLStb(λ̂Dm)
is effective. Under item 4, there is evidence of a large trend break, but there is no reason to believe
that the initial condition is large, therefore both the ADF-OLStb(λ̂Dm) and MDF-GLS should
be used.

Now consider the modification of the U(sκ) strategy, denoted by U∗(sκ, sα). This modification,
as well as U(sκ), uses additional tests without breaks to improve the power of the procedure in
cases with no breaks. In order to analyze the asymptotic behavior of this strategy, we need, in
addition to the known results of HLT12 and HLT13, to obtain the limiting distribution of the
ADF-OLSt test under a local break in trend, provided in Lemma 2 below.

Lemma 2 Let {yt} be generated as (1) and (2) and Assumptions 1 and 2 are held. Then
under ρT = 1− c/T , 0 ≤ c <∞

ADF -OLSt ⇒ Kt
c (1, λ0, κ)2 −Kt

c (0, λ0, κ)2 − 1

2
√∫ 1

0
Kt
c (r, λ0, κ)2 dr

, (13)

where

Kt
c (r, λ0, κ) = κ(r − λ0)I(r > λ0)− κ(1− λ0)2/2

− κ(r − 0.5)(1− 3λ2
0 + 2λ3

0) +Kµ
c (r)− 12(r − 0.5)

∫ 1

0

(r − 0.5)Kc(s)ds, (14)

Kµ
c (r) = Kc(r)−

∫ 1

0

Kc(s)ds,

and Kc(r) is defined in (9).

The proof of this lemma is similar to the proof of HLT12 for the ADF-GLSt test using the results
from Harvey et al. (2009b), and is therefore omitted.

Thus, the U∗(sκ, sα) strategy is defined in Algorithm 2. Critical values and scaling constants
are provided in Table 2.

Algorithm 2 The modified U∗(sκ, sα) strategy is defined as follows:

1. If sκ ≤ cvκ and sα > cvα, then use the strategy

Reject H0 if
{
ADF -OLSt < τξ ×m3

ξ × cvADF -OLSt

or MDF -OLS < τξ ×m3
ξ × cvMDF -OLS

}
, (15)

wherem3
ξ is the scaling constant for the union of theADF -OLSt andMDF -OLS tests

with a conservative critical value for the latter.
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2. If sκ ≤ cvκ and sα ≤ cvα, then use the strategy

Reject H0 if
{
ADF -OLSt < τξ ×m4

ξ × cvADF -OLSt

or

ADF -GLSt < τξ ×m4
ξ × cvADF -GLSt

or MDF -OLS < τξ ×m4
ξ × cvMDF -OLS

or MDF -GLS < τξ ×m4
ξ × cvMDF -GLS

}
, (16)

wherem4
ξ is the scaling constant for the union of theADF -OLSt,ADF -GLSt,MDF -OLS

and MDF -GLS tests, with conservative critical values for the latter two.

3. If sκ > cvκ and sα > cvα, then use the ADF -OLStb(λ̂Dm) test with the critical values
τξ × cvADF -OLStb

;

4. If sκ > cvκ and sα ≤ cvα, then use the strategy

Reject H0 if
{
ADF -OLStb(λ̂Dm) < τξ ×m2

ξ × cvADF -OLStb

or MDF -GLS < τξ ×m2
ξ × cvMDF -GLS

}
, (17)

where m2
ξ is the scaling constant for the union of ADF -OLStb(λ̂Dm) and MDF -GLS.

In this strategy, τξ is the scaling constant for overall size control.

The basic concepts of this strategy are as follows. Under item 1 there are no reasons to assume
that a break is actually present in the data, but there is evidence in favor of a large initial condition.
Thus, the union of theMDF-OLS and theADF-OLSt tests should be used. Under item 2, there
are no reasons to assume that both the magnitude of the break and the initial condition are large,
so the union of rejection, including four tests, the ADF-OLSt, ADF-GLSt, MDF-OLS and
MDF-GLS should be used. The 3rd and 4th items are the same as the 3rd and 4th items from
the A∗(sκ, sα) strategy except for the other overall scaling constant.

Figures 8 and 9 show the asymptotic size-adjusted power (the correction is performed sim-
ilarly to the way it was performed in the previous subsection, the maximum sizes across κ are
provided in Table 1) for c = 20 and c = 30, respectively.10 These results correspond to the be-
havior of the unit root tests and pre-tests and show the robustness of the proposed strategies for
various initial conditions. The A∗(tHLT , sα) strategy seems to be the most robust because un-
der small initial condition the power curve lies between the ADF-OLStb(λ̂Dm) and the effective
MDF-GLS, under large initial condition and small break this strategy considerably improve the
power “valley” effect of the ADF-OLStb(λ̂Dm) test, and under large initial condition and large
break the power close to the effective ADF-OLStb(λ̂Dm). The U∗(tHLT , sα) strategy still shows
small power “valleys” for small α, although somewhat outperform all tests for small κ.

We also consider the behavior of the tests for DGP (1)-(2) in finite samples when the error
terms are generated according to either an i.i.d sequence or the AR(1) and MA(1) processes with
the sample size T = 150. This corresponds to εt ∼ i.i.d.N(0, 1) for the case of i.i.d., εt = 0.5εt−1+
et for the case of AR(1), and εt = et − 0.5et−1 for the case of MA(1), where et ∼ i.i.d.N(0, 1). For
break date estimator (3) we use Dm = {0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.975, 1}. The maximum
sizes across κ are provided in Table 1. For i.i.d and AR(1) cases the size is close to the nominal

10All results regarding the power of the tests are provided only for the tHLT for brevity.
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one, for MA(1) case the liberal size distortion is sufficiently large but this is standard results (see
the corresponding tables in HLT12 and HLT13). The results are presented in Figures 8 and 9.
Qualitatively, the results are consistent with the asymptotic, especially for i.i.d. case. However,
the A∗(tHLT , sα) still remains the most robust strategy that we recommend to use in practice.

5 Further extensions

Based on the properties of our proposed modifications described in the previous section, these
procedures can be expanded in several directions. Furthermore, we briefly consider the following
generalizations indicating the associated limitations: using additional information from the test
for trend, the presence of more than one structural break, and the presence of a priori information
about the location of the break.

5.1 Uncertainty over the trend

In some situations an additional uncertainty can exist. We restrict our model to the condition
that if there is a break in trend, then the coefficient of the trend is exactly non-zero (in fact, if the
break is present, the test statistics are independent of the trend magnitude). However, if there is
no trend break, it is possible that there is no trend in the data, and in this case, only the tests that
take the constant in their construction into account are effective. In other words, theADF-OLSµ

and ADF-GLSµ tests (which are constructed in a similar way to ADF-OLSt and ADF-GLSt,
but without trend) should be included in our U∗(sκ, sα) strategy. It would be possible to generalize
Algorithm 2 by additionally including theADF-OLSµ andADF-GLSµ tests if (sequentially) first
the break is not detected, and then the trend is not detected.

However, when using such a procedure, one may encounter two problems. The first is that the
power of tests for trend will be very low when there is a small undetectable break with the opposite
sign. The second problem is that when both a break and trend are undetected, the strategy should
include six tests, so the critical values should be multiplied by a scaling constant of 1.3 (at the 5
percent significance level) to control the size in the absence of a break and trend. This will have a
negative effect on the power. More detailed results from the simulations are available on request.

5.2 Multiple structural breaks

The test procedures discussed above can be used in a case of multiple structural breaks, because
if the number of breaks is more than taken into account when constructing the test, the power
will drop to zero. For the unit root tests we can consider two types of tests based on OLS- or
GLS-detrending, respectively, similar to the previous section. The infimum test based on GLS-
detrending was proposed by HLT2013 in the context of a case of multiple breaks, and this test was
effective under small initial conditions. The extensions of the OLS-based tests are constructed in
a similar way.

However, the problem of the construction of the effective combination of OLS-based tests un-
der large initial conditions has arisen. The behavior of the MDF-OLS with multiple breaks is
not investigated under fixed break magnitudes and unclear how large the magnitudes of breaks
should be in order experience serious size distortions with MDF-OLS. If we find an effective
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combination of OLS-based tests, it could be used in similar strategies to those described in Sec-
tion 4, with the Kejriwal and Perron (2010) and Sobreira and Nunes (2012) procedures used as
pre-tests to determine the number of breaks (see also Sobreira et al. (2014)). However, the power
“valleys” for these strategies can be much more severe and can increase with the number of tests.
One might ask whether it makes sense in the case of, for example, three breaks, to use a fairly
complex combination of tests, and the best solution is to use only one test (with the maximum
number of breaks). We have left all these questions open for future research. Currently, the test
based on (augmented) Dickey-Fuller regression with with break dates estimators according Har-
vey and Leybourne (2013) (the ADF-OLStb(λ̂Dm) in case of multiple breaks) seems to be the
most robust.

5.3 A priori information on the break date

One modification when testing with the allowance for one structural break was proposed in Har-
vey et al. (2014). Many unit root tests with a break use the fact that the break can occur in any
location, except for some values at the beginning and end of the series. However, the researcher
may know some a priori information about the location of the break without knowing its exact lo-
cation. This approach was first considered by Andrews (1993) when testing for general structural
instability by motivating it using two examples: a significant political event (economic reform,
war, etc.) can occur in a certain period of time, but it is unknown exactly when the effects begin;
the event may occur on a certain date, but the effect occurs with some delay.

A priori information about the date of the break implies that the true break fraction is λ0 ∈
Λ (τmid, δ), where Λ (τmid, δ) is a window in which the break occurs. This window is defined as
Λ (τmid, δ) = [τmid − δ/2, τmid + δ/2], where δ > 0 denotes the width of the window containing all
permissible break fractions, and τmid denotes the mid-point of the window. τmid − δ/2 > 0 and
τmid + δ/2 < 1 is a requirement.

Therefore, all minimizations considered in this paper are performed not on the whole set Λ =
[λL, λU ], but on the set Λ (τmid, δ). It is clear that the power of the test increases when there is more
known a priori information about the location of the true break date, i.e. with a decreasing value
of δ. The location of the break within the selected window has a small effect on the asymptotic size
and power. However, the size and power will be seriously downward biased if the information about
the true break date location is wrong, and the distortion increases as the error of this information
increases. Thus, all procedures considered in this paper can be easily expanded to cases of partial
information about the break date location.11 The ox-code for calculating the critical values and
scaling constants for different δ and τmid is available on the author’s web-page.

6 Conclusion

In this paper different types of uncertainty concerning trend, break, and initial conditions were
analyzed. Under various magnitudes of the trend/break/initial condition, which are usually un-
known a priori, different tests are effective. It was shown that GLS-based unit root tests with a
break had low power under large initial conditions, much like the conventional GLS-based test
without a break. However, they have maximum power across all considered tests under zero initial

11Note, that the MDF-OLS test can be used for all κ if the break is occurred in the second half of sample.
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condition. The behavior of different tests with a break based on OLS-detrending was analyzed,
and algorithms allowing for uncertainty concerning both the trend break and the initial condi-
tion were proposed. Thus, the proposed algorithms are useful in empirical applications, because,
in contrast to existing approaches, we examined the situation of simultaneous uncertainty about
trend breaks and initial value.

Also we discussed possible modifications of the proposed strategies: allowing additional un-
certainty over the trend and using the test with the absence of break, the possible presence of
multiple breaks, and using partial information about break date location.
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Table 1. Maximum finite sample sizes of nominal 0.05-level tests across κ ∈ (0, 16)

T =∞ i.i.d. errors AR(1) errors MA(1) errors

MDF-GLS 0.051 0.051 0.057 0.111

ADF-OLS(λ̂Dm) 0.053 0.063 0.042 0.087

MDF-OLS 0.052 0.048 0.050 0.099

MDF-OLSρ 0.053 0.032 0.077 0.254

U∗(tHLT , sα) 0.053 0.063 0.047 0.102

U∗(tPY , sα) 0.053 0.056 0.048 0.101

A∗(tHLT , sα) 0.053 0.067 0.059 0.115

A∗(tPY , sα) 0.053 0.065 0.060 0.115

Table 2. Asymptotic critical values and scaling constants at ξ-level

ξ 0.01 0.05 0.10

cvADF -GLSt

-3.41 -2.84 -2.54

cvADF -OLSt

-3.95 -3.40 -3.11

cvMDF -GLS -4.37 -3.85 -3.56

cvMDF -OLS -4.79 -4.25 -3.99

cvADF -OLStb

-4.60 -4.08 -3.80

m1
ξ 1.03 1.04 1.04

m2
ξ 1.03 1.03 1.03

m3
ξ 1.04 1.05 1.06

m4
ξ 1.07 1.10 1.12

τξ(tHLT ) 1.02 1.02 1.02

δξ(tHLT ) 1.00 1.00 1.00

τξ(tPY ) 1.02 1.02 1.02

δξ(tPY ) 1.00 1.00 1.00
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Figure 1. Asymptotic local power of sκ, c = 5

tHLT : , tPY :
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Figure 2. Asymptotic local power of sκ, c = 10

tHLT : , tPY :
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Figure 3. Asymptotic local power of sκ, c = 20

tHLT : , tPY :
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Figure 4. Asymptotic local power of sκ, c = 30

tHLT : , tPY :
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Figure 5. Asymptotic local power, c = 20

MDF-GLS : , ADF-GLS(λ̂Dm) : , MDF-OLS : , MDF-OLSρ : · · · ,
ADF-OLS(λ̂Dm) : ·
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Figure 6. Asymptotic local power, c = 30

MDF-GLS : , ADF-GLS(λ̂Dm) : , MDF-OLS : , MDF-OLSρ : · · · ,
ADF-OLS(λ̂Dm) : ·
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Figure 7. Asymptotic local power, sα
c = 5 : , c = 10 : , c = 20 : · c = 30 : · · ·
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Figure 8. Asymptotic local power (left) and finite sample power with i.i.d. errors (right), c = 30

MDF-GLS : , ADF-OLStb(λ̂Dm) : · UR∗(tHLT , sα) : , A∗(tHLT , sα) : ,
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Figure 9. Finite sample power with AR(1) errors (left) and finite sample power with MA(1)
errors (right), c = 30

MDF-GLS : , ADF-OLStb(λ̂Dm) : · UR∗(tHLT , sα) : , A∗(tHLT , sα) : ,
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