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Abstract

In a recently publicized study, Harvey et al. (2012) investigated procedures for unit root
testing employing break detection methods under local break in trend. We apply this method-
ology to analyze asymptotic and finite sample behavior of procedures under local break to test
the stationarity null hypothesis local to unit root, against alternative hypothesis about the pres-
ence of a unit root. We extend the GLS-based stationarity test proposed by Harris et al. (2007)
to the case of structural break and obtain asymptotic properties under local trend break. Two
procedures are considered. The first procedure uses a with-break stationarity test, but with
adaptive critical values. The second procedure utilizes the intersection of rejection testing
strategy containing tests with and without a break. Application of these approaches help to
prevent serious size distortions for small break magnitude that are otherwise undetectable.
Additionally, in a similar approach as Harvey et al. (2013) and Busetti and Harvey (2001),
we propose a test based on minimizing the sequence of GLS-based stationarity test statistics
over all possible break dates. This infimum-test in contrast to Busetti and Harvey (2001) does
not require an additional assumption about a faster rate of convergence of break magnitude.
Asymptotic and finite sample simulations show that under local to zero behavior of the trend
break the asymptotic analysis provides a good approximation of the finite sample behavior of
the proposed procedures. Proposed procedures can be used for confirmatory analysis together
with tests of Harvey et al. (2012) and Harvey et al. (2013).
Key words: Stationarity tests, KPSS tests, local break in trend, size distortions, intersection
of rejection decision rule.
JEL: C12, C22
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1 Introduction

Presence of a unit root in a time series is a major question in empirical data analysis and unit root
testing plays an important role in applications. However, macroeconomic data are often char-
acterized by a break in trend and starting with the work of Perron (1989) considerable research
attention has focused on the impact of this break on unit root testing. Similar approaches have
been developed to test the null hypothesis of stationarity of time series against a unit root alter-
native, starting with the work of Kwiatkowski et al. (1992) (hereafter KPSS). In a subsequent
study, Busetti and Harvey (2001) generalized the KPSS test to the case of structural change and
obtained the limiting distributions of the test statistics (see also Harvey and Mills (2003). For un-
known break date authors proposed the infimum of the sequence of stationarity statistics for each
possible break date. This approach, however, is based on an assumption that the magnitude of
trend break converges to zero at a faster rate than T−3/2 (for break in level the rate of convergence
should be a faster than T−1/2). Without this assumption, the limiting distribution of a test statis-
tic will depend not only on the break fraction, but also on its magnitude. Simulations of Busetti
and Harvey (2003) showed that the infimum-test has serious size distortions even for small break.
Additionally, Busetti and Harvey (2003) proposed another approach based on the superconsistent
break date estimator (see also Kurozumi (2002)). In this approach the first step consists of an
estimation of a superconsistent estimate of break fraction under the null hypothesis of stationar-
ity. Subsequently, this estimate is substituted into the KPSS statistic as true. Obtained limiting
distribution of test statistic coincides with the limit distribution of known break date. However, for
small breaks this procedure has significantly lower power than the infimum-test.

In a related study, Müller (2005) investigated the properties of conventional KPSS test un-
der near integration. Results of this study revealed that the use of a bandwidth parameter in the
long-run variance estimator, increasing at a slower rate than the length of the sample, leads to
an asymptotic size equal to unity under the null hypothesis about near integration. This result
helps to address the increasing size with highly autocorrelated stationary data generating pro-
cess. It is clear that conventional KPSS tests that take into account the structural shift have a
similar disadvantage. However, use of the bandwidth parameter in the long-run variance estima-
tor increasing at the same rate as the length of the sample the KPSS test is dominated by point
optimal test proposed by author. Harris et al. (2007) (hereafter HLM) proposed a modification of
KPSS test based on GLS-detrending which was not affected by asymptotic size distortions and
was comparable with the point optimal test of Müller1.

Recent studies Harvey et al. (2012) (hereafter HLT12) and Harvey et al. (2013) (hereafter
HLT13) addressed the problem of uncertainty concerning the presence and dating of structural
break in the context of unit root testing. An intuitive approach is to use a pre-test to detect the
break and then calculate the test statistic with or without this break. However, these methods are
effective only in the case of a fixed or zero trend break, which in finite samples produces “valleys”
in the power functions of tests; the power is high for a very small break, but declines rapidly with
increasing magnitude of the break until it increases again. HLT12 proposed two strategies to
address this issue. The first strategy prescribes to always to use a test with break, but with adaptive
critical values. The second approach proposed to use the union of rejection of two tests, taking
into account scenarios with an without break tests. Additionally, these authors developed local

1It should be noted that GLS-based KPSS test clearly dominates point optimal test in cases of a large initial value.
The problem of initial conditions, however, is beyond the scope of this study
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asymptotic theory for existing and new procedures by using local to zero behavior of the trend
break. HLT13 proposed an alternative approach in which the test statistic is computed similarly
to (Zivot and Andrews, 1992), minimizing the sequence of test statistics for all possible break
dates using the GLS-detrended data.

In this study we extend GLS-based KPSS test proposed by HLM to the case of structural
break through several approaches. The first approach uses the break fraction estimator obtained
by minimizing the sum of squared residuals for the model in first differences. This estimator pro-
vides a superconsistent estimator of break fraction. The second approach uses modifications pro-
posed in HLT12 in the context of stationarity testing and applies some pre-tests for testing for
break presence. The third approach uses an infimum of sequence of GLS-detrended test statistics
for all possible break dates. Whereas conventional infimum-based KPSS test requires additional
assumption of the break magnitude it is not necessary for GLS-based test. We obtain the lim-
iting distributions of all statistics under local to zero trend break and investigate the asymptotic
behavior of these tests. Additionally, we assign asymptotic critical values for the above proce-
dures. Asymptotic size shows similar properties obtained by HLT12. If we use specific tests (with
or without break) which are based on some pre-tests, then the size of this testing procedure is
small for very small breaks, and then increases as the break magnitude increases before decreas-
ing again. We refer to this effect as size “hills” similar to the power “valleys” in the context of unit
root testing. Finite sample simulations confirm a good approximation of the limiting distributions
under local behavior of the trend break. Our proposed modifications offers improvement to test
robustness for small trend break magnitude and smoothes the described size “hills”. The infimum
test shows the most attractive properties alongside with simplicity of calculation.

The paper is organized in six sections and contains an Appendix. Following the introductory
section we describe the model with (local to zero) trend break and GLS-based KPSS test statistic
in Section 2. In Section 3 we obtain the limiting distributions of test statistics under local break
behavior. Alternative procedures in the stationarity testing context are described in Section 4.
Asymptotic and finite sample behavior of all considered tests is investigated in Section 5. Section
6 presents our conclusions. All proofs are collected in the Appendix section.

2 Model

Consider the data generating process (DGP) in the case of break in trend as

yt = µ+ βt+ γTDTt(λ0) + ut, t = 1, . . . , T (1)

ut = ρut−1 + εt, t = 2, . . . , T (2)

where DTt(λ0) = (t − bλ0T c)I(t > bλ0T c), I(·) is the indicator function and the trend break
occurs at time bλ0T c (λ0 is the corresponding break fraction), if break magnitude γT 6= 0. It
is assumed that the true break fraction λ0 is unknown, but belongs to the range Λ = [λL, λU ],
0 < λL < λU < 1, λL and λU are trimming parameters.

The assumption about initial value in (2) is such that u1 = Op(T
1/2) and linear process εt

satisfies the standard assumptions (see Phillips and Solo (1992)):

Assumption 1 Let

εt = γ(L)et =
∞∑
i=0

γiet−i,
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with γ(z) 6= 0 for all |z| ≤ 1 and
∑∞

i=0 i|γi| < ∞, where et is the martingale difference
sequence with conditional variance σ2

e and supt E(e4
t ) < ∞. The short-run and long-run

variances of εt are defined as σ2
ε = E(ε2

t ) and ω2
ε = limT→∞ T

−1E
(∑T

t=1 εt

)2

= σ2
eγ(1)2,

respectively.

The autoregressive parameter in (2) is ρ = ρT = 1− c/T , where c ≥ 0. Our purpose is testing
the null hypothesis of stationarity against alternative about a unit root regardless of whether the
break in trend is present or not. We test the hypothesis H0 : c ≥ c̄ > 0 against the alternative
H1 : c = 0, where c̄ is the minimal amount of mean reversion under the stationary null hypothesis.
However, in contrast to Kurozumi (2002) and Busetti and Harvey (2001), who considered the
break magnitude γT as fixed (independent of sample size, T ), we consider the break magnitude as
local to zero, that is γT = κωεT

−1/2 as in HLT12 and HLT13.
Because conventional KPSS tests have the asymptotic size equal to unity under local to unit

root behavior of ρT (see (Müller, 2005)), for stationarity testing we can use a modification of the
KPSS test for (quasi) GLS-detrended data proposed by HLM2 (see also Skrobotov (2013) where
uncertainty about the presence of linear trend is investigated). Specifically, the test statistic in the
absence of break (only with linear trend) is constructed as

St(c̄) =
T−2

∑T
t=2 (

∑t
j=2 ũ

t
j)

2

ω̂2
ε

, (3)

where ũt are OLS residuals from regression of yc̄ = yt− ρ̄Tyt−1 on Zc̄ = zt− ρ̄T zt−1, t = 2, . . . , T ,
where zt = (1, t)′ (that is, when γT = 0).

We propose the extension of this test statistic to the case of a single structural break in trend:

Stb(c̄, λ) =
T−2

∑T
t=2 (

∑t
j=2 ũ

tb
j )2

ω̂2
ε

, (4)

where ũtbt are OLS residuals from regression of yc̄ = yt− ρ̄Tyt−1 on Zc̄ = zt− ρ̄T zt−1, t = 2, . . . , T ,
где zt = (1, t, DTt(λ))′. For all statistics (3) and (4) the ω̂2

ε is any consistent long-run variance
estimator of εt.3.

If the break date is unknown, Harris et al. (2009) proposed to use break date estimator λ̃,
based on first differenced regression (1):

λ̃ = arg min
λ∈Λ

S(1, λ), (5)

where S(1, λ) is the sum of squared residuals from regression y0 = yt − yt−1 on Z0 = zt − zt−1,
where zt = (1, t, DTt(λ))′. This estimate is superconsistent for all 0 ≤ c (see Harris et al. (2009)).

2In HLM authors considered only constant and trend cases and analyzed only the constant case.
3E.g., HLM used nonparametric spectral density estimator with quadratic spectral (QS) kernel and the automatic

bandwidth selection of (Newey and West, 1994). For calculation corresponding GLS-detrended residuals, ũt or ũtbt ,
are used.
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3 Asymptotic behavior of stationarity tests

We investigate the asymptotic size of the St ans Stb(λ̃) tests under local to unit root behavior and
local to zero behavior of break in trend magnitude γT = κωεT

−1/2, where κ is some constant4.
Asymptotic distribution of St statistic is given in the following theorem.

Theorem 1 Let {yt} is generated as (1) and (2) and Assumption 1 holds. Then under ρT =
1− c/T , 0 ≤ c <∞

St ⇒
∫ 1

0

(
Hc,c̄(r, λ0, κ)− 6r(1− r)

∫ 1

0

Hc,c̄(s, λ0, κ)ds

)2

dr, (6)

where

Hc,c̄,κ(r, λ0, κ) = Hc,c̄(r) + κl(r, λ0),

Hc,c̄(r) = Wc(r) + c̄

∫ r

0

Wc(s)ds− r
[
Wc(1) + c̄

∫ 1

0

Wc(s)ds

]
,

l(r, λ0) =
[
(r − λ0) +

c̄

2
(r − λ0)2

]
I(r > λ0)− r

(
(1− λ0) +

c̄

2
(1− λ0)2

)
.

Remark 1 Proof of Theorem 1 is given in the Appendix. It should be noted that for κ = 0 (in
the absence of a break) the limiting distribution coincides with the distribution obtained in HLM.
However for κ 6= 0 the limiting distribution of the statistic depends on dating and magnitude of a
local trend break.

Additionally, we obtain the limiting distribution of the test with break, Stb(λ), implemented for
some generic break fraction λ, which may be different from the true break fraction, λ0. The results
is given in Theorem 2.

Theorem 2 Let {yt} is generated as (1) and (2) and Assumption 1 holds. Then under ρT =
1− c/T , 0 ≤ c <∞

Stb(λ)⇒
∫ 1

0

H tb
c,c̄(r, λ0, λ, κ)2dr, (7)

where

H tb
c,c̄(r, λ0, λ, κ) = Wc(r) + c̄λ

∫ r

0

Wc(r)dr + κ
[
(r − λ0) +

c̄λ
2

(r − λ0)2
]
I(r > λ0)

−

 c̄λr

c̄λ
r2

2
+ r

(c̄λ
r2

2
+ r + c̄λ

λ2

2
− λ− c̄λλr)I(r > λ0)

′  c̄2
λ c̄λ + c̄2

λ/2 kc̄λ(λ)
c̄λ + c̄2

λ/2 1 + c̄λ + c̄2
λ/3 mc̄λ(λ)

kc̄λ(λ) mc̄λ(λ) dc̄λ(λ)

−1

×

 ac,c̄λ + κqc,c̄λ(λ0)
bc,c̄λ + κfc,c̄λ(λ0)

bc,c̄λ(λ) + κfc,c̄λ(λ0, λ)


4Here and below, we omit the dependence of the tests on the c̄ parameter for brevity.
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with

kc̄λ(λ) = c̄λ + c̄2
λ/2− λ(c̄λ + c̄2

λ − c̄2
λλ/2),

mc̄λ(λ) = 1 + c̄λ + c̄2
λ/3− λ(1 + c̄λ + c̄2

λ/2− c̄2
λλ

2/6),

dc̄λ(λ) = 1 + c̄λ + c̄2
λ/3− λ(1 + 2c̄λ − c̄λλ+ c̄2

λ − c̄2
λλ+ c̄2

λλ
2/3),

ac,c̄λ = c̄λWc(1) + c̄2
λ

∫ 1

0

Wc(s)ds,

qc,c̄λ(λ0) = c̄λ(1− λ0) + c̄2
λ(1− λ0)2/2,

bc,c̄λ = (1 + c̄λ)Wc(1) + c̄2
λ

∫ 1

0

sWc(s)ds,

fc,c̄λ(λ0) = (1− λ0)[1 + c̄λ + c̄2
λ/3− c̄2

λλ0(1 + λ0)/6],

bc,c̄λ(λ) = (1 + c̄λ − c̄λλ)Wc(1)−Wc(λ) + c̄2
λ

∫ 1

λ

(s− λ)Wc(s)ds,

fc,c̄λ(λ0, λ) = (1− λ0){1 + c̄λ + c̄2
λ/3− c̄λλ− c̄2

λλ(1− λ0)/2− c̄2
λλ0(1 + λ0)/6}

−(λ− λ0){1− c̄2
λ(λ− λ0)2/6}I(λ > λ0).

Remark 2 Proof of Theorem 2 is given in the Appendix. For λ = λ0 it can be shown that the
limiting distribution of the Stb(λ) statistic does not depend on break magnitude κ. At the same
time, if we use the break fraction estimate λ̃ then under local behavior of the trend break this
estimate can not be consistently estimated and will be different from the true break fraction λ0 in
a general case. More specifically, if we use the break date estimate as (5), this estimate under
local behavior of both autoregressive root and the break parameter has the following asymptotic
distribution (see HLT12):

λ̃⇒ arg sup
λ∈Λ

[
Wc(1) + κ(1− λ0)

Wc(1)−Wc(λ) + κ(1− λ0)− κ(λ− λ0)I(λ > λ0)

]′ [
1 (1− λ)

(1− λ) (1− λ)

]−1

×
[

Wc(1) + κ(1− λ0)
Wc(1)−Wc(λ) + κ(1− λ0)− κ(λ− λ0)I(λ > λ0)

]
Then, the limiting distribution of Stb(λ̃) test follows directly from the continuous mapping theorem
(CMT). I.e., for λ̃ 6= λ0 the limiting distribution of Stb(λ̃) will depend on dating and magnitude of
the local break in trend and also on the estimated break fraction λ̃.
Remark 3 For κ = 0 the Stb(λ̃) test will have the asymptotic size that is higher than the nominal
one for a specified critical value at c = c̄λ, for small κ the size of test will increase slightly and only
for a moderate κ the size will be close to a nominal one. We set the c̄ and c = c̄λ parameters as in
corresponding unit root tests, equal to 13.5 (as in Elliott et al. (1996)) and 17.6 (as in HLT13).
Remark 4 For c = c̄ the St and Stb(λ̃) tests have the same limiting distribution as in KPSS and
Busetti and Harvey (2001), respectively. This allows the use of known critical values for specified
c = c̄ or c = c̄λ as in HLM.
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4 Alternative procedures to mitigate the effect of the size
hills

If there is knowledge about presence of the break in data then it is necessary to use the Stb(λ̃) test
allowing this break as otherwise liberal size distortions will take place. At the same time, if the
trend break does not occur (γT = 0), then the Stb(λ̃) test allowing the break can be used, but the
St test that does not allow the break will be effective (as it has smaller size and higher power).

In Harris et al. (2009) and Carrion-i-Silvestre et al. (2009) testing strategies were proposed
in the context of unit root testing, in which under uncertainty over the presence break the test
statistics with or without break is selected on the basis of some pre-tests. In these cases, if the
break is detected by some artificial statistics then the unit root test (in our case the stationarity
test) with break should be used. In this paper let B be some statistics for testing γT = 0 with a
priori unknown whether the series is trend-stationary or contains an autoregressive unit root. If
the null hypothesis is not rejected, i.e., B < cvB, where cvB is corresponding critical value for B
statistic, then it is recommended to use the stationarity test without break (St in our case). If,
however, the null hypothesis will be rejected, i.e., B ≥ cvB, then the St test will have serious size
distortions due to a neglected break, and it is necessary to use the Stb(λ̃) test. This strategy can
be written as follows:

S(B) =

{
St if B < cvB

Stb(λ̃) if B ≥ cvB
, (8)

where tPY test proposed by Perron and Yabu (2009) or tλ test proposed by Harvey et al. (2009)5

can be used as B pre-test.
This testing strategy, however, has an important drawback. The break magnitude may be too

small to be reliably detected (and the St test without break will tend to be used), but it can be
sufficiently large to radically increase the size of St (and, therefore, the overall strategy including
this test) as this test ignores a break. We call these serious size distortions in the intermediate
range of small κ size “hills” (similar to power “valleys” that arise in the unit root testing context,
see HLT12). In simulation analysis of Section 5 the effect of size “hills” will be shown. Notably,
this effect is undetectable considering the fixed break magnitude, as the test in (8) asymptotically
selects the correct statistics, St or Stb.

Similar to analysis in HLT12, there are several approaches to smooth the effect of size “hills”.
One approach is to always implement a test with break Stb(λ̃), as in this case the size “hills” do not
arise because the test without break is not used. Then, for κ = 0 the size of test is larger than the
nominal one6, while the size is close to the nominal one for large κ. Therefore, for better size control
over all κ this test with conservative critical values (obtained for κ = 0) can be implemented.
However, for large κ the power of Stb(λ̃) with conservative critical values will be lower than the
power of this test with typical critical values.

The first method proposed by HLT in the unit root testing context, provides control on size
through use of conservative critical values cvconsvtb (obtained for κ = 0), if the trend break is not
detected by some pre-test7. Simultaneously, if the break is detected by a pre-test (indicating a

5We do not give exact formulas for tPY and tλ tests to preserve brevity. For a brief description see HLT2012,
Section 3.

6Preliminary simulations show that the asymptotic size of the Stb(λ̃) for c = c̄λ = 17.6 is equal to 0.12 in case of
break absence.

7At the nominal 10, 5 and 1 percent significance level, cvconsvtb are 0.092, 0.115 and 0.173, respectively.

7



fairly large value of κ), the conventional critical values cvλ̃tb (associated with a known break fraction,
obtained for λ = λ0) can be used. This alternative procedure can be written as

AS(B) = Stb(λ̃) with critical values

{
cvconsvtb if B < cvB

cvλ̃tb if B ≥ cvB
. (9)

This procedure allows to avoid power losses for large breaks. Similar to test S(B) in (8), one of
two pre-tests, tPY or tλ, can be implemented in this case as B test.

The second method is the simultaneous use of two tests, St and Stb(λ̃) (the latter with con-
servative critical values), when the break is not detected. When there is clear evidence of a break
in trend there is no need to use the St test (its size tends to unity), and only the Stb(λ̃) statistic
should be implemented (with a critical value associated with a known break fraction, λ = λ0).
This strategy of intersection of rejection8 can be written as follows:

IR(B) =

{
Reject H0 if {St > mξcvt and Stb(λ̃) > mξcv

consv
tb } if B ≤ cvB

Reject H0 if {Stb(λ̃) > cvλ̃tb} if B > cvB
, (10)

where mξ is some scaling constant ensuring that the asymptotic size equals ξ for a given value c
in the joint implementation of St and Stb(λ̃) tests9. In case of scaling absence, the size and power
of tests decreases, so we refer to the decision rule using the scaling as liberal. We use the cvt and
cvconsvtb to control the size for small break magnitudes.

The third way follows the approach of Busetti and Harvey (2001) and HLT2013, where the test
statistic is minimized over all possible break dates. More precisely, this statistic is constructed as

MS = inf
λ∈Λ

Stb(λ). (11)

It should be noted, that while for infimum-based KPSS test in Busetti and Harvey (2001) an
additional assumption is needed so that the magnitude of trend break converges to zero at a faster
rate than T−3/2, for present GLS-based modification this assumption is not necessary in our local
to unity asymptotic framework.

The limiting distributions of all tests, (8), (9), (10) and (11), directly follow from the results
of Theorems 1 and 2 and applications of the CMT (the results for MS test also follow from the
arguments proved by (Zivot and Andrews, 1992)), and we omit the exact formulas of these distri-
butions to save space.

5 Simulation analysis

5.1 Asymptotic size

In this section we consider the asymptotic size of procedures proposed in the previous section
under local break in trend10. As the IR(B) procedure in (10) uses both the St test for c̄ = 13.5

8In stationarity testing context we reject the null hypothesis if all of the tests reject it, and we call this strategy the
intersection of rejections in contrast to union of rejection strategy in HLT12 for unit root testing.

9Corresponding scaling constants at 10, 5 and 1 percent significance level are 0.661, 0.633 and 0.620, respectively.
10Results are obtained by simulations of the limiting distributions of test statistics, approximating the Wiener

process by i.i.d.N(0, 1) random variates and with integrals approximated by normalized sums of 2,000 steps, with
50,000 replications.
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and Stb(λ̃) test for c̄ = 17.6, and that, for given c = c̄ each of these two tests has an asymptotic
size equal to nominal one, it becomes problematic to compare all of the tests by fixing the size
at c = 17.6 or c = 13.5. Therefore, similar to HLM, (Müller, 2005) and (Skrobotov, 2013), we
compare size (c > 0) of all tests by fixing power (c = 0) at given level.

For a given break fraction λ0 we calculate power (c = 0, critical values are obtained so that the
power is 0.70) of every test, considered in previous sections, over all κ = {0, . . . , 15}. Let the κ∗

parameter denotes κ, for which the specific test has minimum power. The (power-adjusted) size
curves are calculated by scaling the critical values of a particular procedure so that the power is
0.70 for κ = κ∗ (i.e., power is never below 0.70). The same scaling applies for all κ. It should be
noted that the choice of setting power at a value of 0.70 is not crucial, and this value is chosen for
visualization convenience.

Importantly, we note the following for the power of the Stb(λ̃) test. Preliminary simulations
show that for κ = 0 the power of this test (with using of 70% points) calculated for λ̃ = λ0 (known
break date) is equal to 0.66 (lower than 0.70), i.e., the liberal critical value should be used instead
of conservative critical value (e.g. for AS(B) test in order for the power to equal 0.70 for κ = 0).
However, for 5% point and c = c̄λ the results will be opposite, i.e. the size for large κwill be higher
than for small κ. However, this does not affect the final results, as we are interested in the trade-off
between size and power of tests by using multiple tests simultaneously.

Figures 1(a)-(c), 2(a)-(c) and 3(a)-(c) show the asymptotic power-adjusted size of St, Stb(λ̃),
S(tPY ), S(tλ) tests for c = 10, 20 and 30, respectively. It is seen that the St test without break has
a lower size across all tests, but with increasing κ its size increases rapidly to unity. The Stb(λ̃) test
is more robust to κ, but its size is much higher than the size of the St test for small κ. The S(tPY )
and S(tλ) tests with pre-testing for trend coefficient have a size close to that of St for small κ. This
is due to the fact that for small values of the break the pre-tests fail to detect the presence of the
break. However, for intermediate κ these pre-tests suffer from serious size distortions approaching
to unity for every reasonable value of c, because the break is too small to be detected by pre-tests
and the S(tPY ) and S(tλ) tests inherit the properties of St for moderate κ, i.e. the size “hills” effect
occurs. For large κ the break will almost always be detected by pre-tests, thus the size will be
close to the size of a with-break test.

Figures 1(d)-(f), 2(d)-(f) and 3(d)-(f) show the asymptotic power-adjusted size of Stb(λ̃),
AS(tPY ), AS(tλ), IS(tPY ), IS(tλ) and MS tests for c = 10, 20 and 30, respectively. The AS(tPY )
and AS(tλ) tests do not show the size “hills”, for small κ the size of their tests is slightly higher
than that of Stb(λ̃), while for large κ the size reduces in comparison to Stb(λ̃) (especially for the
λ0 = 0.3 case, less pronounced in case of λ0 = 0.7). The size of IS(tPY ) and IS(tλ) tests for small
κ considerably gains in comparison to Stb(λ̃) and AS(·) due to inclusion of St in testing strat-
egy. However, for moderate κ the size “hills” are still observed (due to scaling of critical values),
although much less pronounced compared to S(tPY ) and S(tλ).

Interesting features are observed in theMS test that minimizes the sequence of GLS-detrended
KPSS statistics over all possible break date. For c = 10 the size curve of MS is close to Stb(λ̃)
across all κ. Increasing c, for c = 20, the size curve of MS is lower than that of Stb(λ̃) almost
everywhere. For λ0 = 0.3 for moderate and large κ the size curves of these two tests are nearly
identical, but for small κ the MS test outperforms Stb(λ̃). Finally, for c = 30 the size of MS is
significantly lower for all tests for λ0 = 0.5 and λ0 = 0.7, except for a small range at small κ,
where IS(tPY ) and IS(tλ) have minimal size across all tests as they use the St without break in
construction. For λ0 = 0.3 the size of MS is lower than the size of Stb(λ̃) for all κ, however, it has

9



higher size than AS(tPY ), AS(tλ), IS(tPY ), IS(tλ) for large κ and IS(tPY ) and IS(tλ) for small
κ. In general, the MS test shows the best asymptotic properties across all considered tests and
better robustness over all κ.

5.2 Finite sample evidence

In this section we investigate the size of all considered tests, St, Stb(λ̃), S(tλ), S(tPY ), AS(tλ),
AS(tPY ), IS(tλ), IS(tPY ) и MS, in finite samples by using the sample size T = 150 and 50,000
replications. We calculate power adjusted size (c > 0) similar to Section 5.1. The break magni-
tude is considered equal to γT = κT−1/2 with κ = {0, . . . , 15}, λ0 = 0.5. It should be noted that
while nonparametric long-run variance estimator ω̂2

ε (based on corresponding GLS-detrended
residuals and by using quadratic spectral (QS) kernel with automatic choice of bandwidth pro-
posed by Newey and West (1994)) performs quite well in finite samples for all considered tests
for i.i.d. and AR(1) errors it is still poorly implemented in case of a negative MA(1) component.
The use of autoregressive estimator as in Ng and Perron (2001) and Perron and Qu (2007) leads
to significant improvement for MA(1) errors, and for i.i.d. and AR(1) errors properties compara-
ble to nonparametric estimation of long-run variance. However, for T = 150 the autoregressive
long-run variance estimator for St test performs worse than the non-parametric estimator, so in
simulations we calculate the St test by using the latter (with finite sample critical values, otherwise
the power of test will be lower than 0.7; for autoregressive estimator in Stb(λ̃) tests the asymptotic
critical values lead to a power that is very close 0.70). Unreported results for lager T approach to
asymptotic.

Figures 4(a)-(c), 5(a)-(c) and 6(a)-(c) show the finite sample power-adjusted size ofSt, Stb(λ̃),
S(tPY ), S(tλ) for c = 10, 20 and 30, respectively, and Figures 4(d)-(f), 5(d)-(f) and 6(d)-(f) show
the finite sample power-adjusted size of Stb(λ̃), AS(tPY ), AS(tλ), IS(tPY ), IS(tλ) and MS for
c = 10, 20 and 30, respectively. First, we consider the behavior of the tests under DGP (1) and
(2), when the errors εt ∼ i.i.d.N(0, 1). Results are qualitatively similar to asymptotic except the
finite sample size is higher than the asymptotic size, and the size “hills” are somewhat less pro-
nounced (even for S(tPY ) and S(tλ) tests). The size of MS is also below all others except for a
small range of small κ, where this tests is dominated by S(tPY ) and S(tλ). This range decreases
with increasing of c. Also with increasing c the size of MS is improved in comparison to other
tests.

Next, we consider the possibility of serial correlation of errors when εt follows AR(1) or MA(1)
processes. More precisely, for AR(1) process εt = 0.5εt−1+et, for MA(1) process εt = et−0.5et−1,
where et ∼ i.i.d.N(0, 1). The results for AR(1) errors are similar to i.i.d. case except that the size
“hill” appears to the right in comparison with the i.i.d case, and the size is higher than in i.i.d.
case. For MA(1) errors the size of all tests is almost the same (except for S(tPY ) и S(tλ)), but
slightly higher than in the AR(1) case; the size “hill” now appears to the left of the i.i.d case.
However, for c = 20 and κ > 1 theMS test outperforms all other tests, and for c = 30 theMS test
is the best for all κ. Additionally, the size ofMS changes are small enough with κ, as in asymptotic
simulations.
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6 Conclusion

In this paper different procedures for stationarity testing (local to unit root) with structural break
in trend against alternative hypothesis about the presence of a unit root are considered. The GLS-
based stationarity test proposed by HLM was extended to the case of structural break. For this
test we proposed testing strategies similar to HLT12 based on pre-testing for the trend break
parameter.

We investigated the effect of size “hills” (considerable increases in size for a small break),
when procedures for break detection are used in the testing strategy. Asymptotic behavior of
all procedures is analyzed under local break in trend and provides a good approximation of the
finite sample behavior. Results show that considered procedures allow to smooth the effect of size
“hills”. Moreover, we investigated the behavior of infimum-test for GLS-detrended data. This
test shows greater size robustness across break magnitude and reveals better properties in many
cases. Thus, the proposed procedures are useful in empirical applications as a complement to the
unit root tests HLT12 and HLT13 for confirmatory analysis.

Generalization of testing strategies to the case of multiple structural changes (similar to HLT13)
should be noted as an avenue for future studies. For AS(tPY ), AS(tλ), IS(tPY ), IS(tλ) tests this
can be nontrivial, but the extension of infimum-test MS should be straightforward taking into
account the very attractive properties this test. Additionally, proposed tests can be extended al-
lowing a break in level to occur at the same time as the break in trend, as in contrast to the unit
root test, the break in level will no longer be asymptotically negligible and will have an impact on
the size and power of the stationarity tests.

Appendix

Proof of Theorem 1.
Consider the estimates µ̃ and β̃:[

µ̃

β̃

]
=

[
g11 g12

g12 g22

]−1 [
h1

h2

]
, (12)

where

g11 = (1− ρ̄)2(T − 1),

g12 = (1− ρ̄)
T∑
t=2

{t− ρ̄(t− 1)},

g22 =
T∑
t=2

{t− ρ̄(t− 1)}2,

h1 = (1− ρ̄)
T∑
t=2

(yt − ρ̄yt−1),

h2 =
T∑
t=2

(yt − ρ̄yt−1){t− ρ̄(t− 1)}.
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The limits included in matrix 2 × 2 are the following: Tg11 → c̄2, g12 → c̄ + c̄2/2, T−1g22 =
1 + c̄+ c̄2/3. For 2× 1 vector the corresponding limits are the following:

T 1/2h1 = c̄T−1/2(yT − y1) + c̄2T−3/2

T∑
t=2

yt−1

= c̄T−1/2uT + c̄2T−3/2

T∑
t=2

ut−1 + c̄κ+ c̄2T−3/2

T∑
t=2

ut−1

+T−1(T − bλ0T c) + c̄2T−3/2

T∑
t=2

DTt−1(λ0)

⇒ c̄Wc(1) + c̄2

∫ 1

0

Wc(s)ds+ κ[c̄(1− λ0) + c̄2(1− λ0)2/2],

T−1/2h2 ⇒ bc,c̄ + κfc,c̄(λ0),

where obtaining the h2 is similar to HLT.
Thus, [

T−1/2µ̃

T 1/2β̃

]
=

[
Tg11 g12

g12 T−1g22

]−1 [
T 1/2h1

T−1/2h2

]
(13)

where the rate of convergence T−1/2 before µ̃ coefficient differs from HLT, because when later
finding GLS-residuals the component depending on от µ̃ is asymptotically negligible, but in our
case after the summation (see (18) and (19)) it has a nondegenerate limiting distribution.

Consider the first 2× 2 matrix from the equation (13):[
Tg11 g12

g12 T−1g22

]−1

=

[
c̄2 c̄+ c̄2/2

c̄+ c̄2/2 (1 + c̄+ c̄2/3)

]−1

(14)

=
12

c̄4

[
1 + c̄+ c̄2/3 −c̄− c̄2/2
−c̄− c̄2/2 c̄2

]
.

Multiplying it by 2× 1 vector from (13), we obtain the following estimates of the parameters:

T−1/2µ̃ = −2

c̄
Wc(1)− 6

c̄2
Wc(1) +

12

c̄2

∫ 1

0

Wc(s)ds+
12

c̄

∫ 1

0

Wc(s)ds

−12

c̄

∫ 1

0

sWc(s)ds+ 4

∫ 1

0

Wc(s)ds− 6

∫ 1

0

sWc(s)ds

+
κ

c̄2
λ0(1− λ0)[(c̄2 + 2c̄)λ0 − c̄2 − 4c̄− 6], (15)

T 1/2β̃ =
12

c̄

[
1

2
W (1)−

∫ 1

0

Wc(s)ds+ c̄

{∫ 1

0

sWc(s)ds−
1

2

∫ 1

0

Wc(s)ds

}]
(16)

−κ
c̄

(1− λ0)(2c̄λ2
0 − λ0(c̄+ 6)− c̄) (17)

Thus, residuals ũt is written as

ũt = (yt − ρ̄yt−1)− µ̃(1− ρ̄)− β̃{t− ρ̄(t− 1)} (18)
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Then

T−1/2

t∑
i=2

ũi = T−1/2

t∑
i=2

(ui − ρ̄ui−1) + κ

[
T−1

t∑
i=2

I(r > λ0) + c̄T−2

t∑
i=2

DTi−1

]

−c̄tT−1T−1/2µ̃− T−1/2β̃
t∑
i=2

(c̄i/T + 1− c̄/T ). (19)

As T−1/2
∑brT c

i=2 (ui − ρ̄ui−1)⇒ Wc(r) + c̄
∫ r

0
Wc(r)dr (see HLM), then

T−1/2

brT c∑
i=2

ũi ⇒ Wc(r) + c̄

∫ r

0

Wc(r)dr − c̄r
{
T−1/2µ̃

}
−
(
c̄
r2

2
+ r

){
T 1/2β̃

}
+κ
[
(r − λ0) +

c̄

2
(r − λ0)2

]
I(r > λ0)

= Wc(r) + c̄

∫ r

0

Wc(r)dr − r
(
Wc(1) + c̄

∫ 1

0

Wc(s)ds

)
+κ
[(

(r − λ0) +
c̄

2
(r − λ0)2

)
I(r > λ0)− r

(
(1− λ0) +

c̄

2
(1− λ0)2

)]
−6r2

[
1

2
Wc(1)−

∫ 1

0

Wc(s)ds+ c̄

∫ 1

0

sWc(s)ds−
1

2
c̄

∫ 1

0

Wc(s)ds

]
+6r

[
1

2
Wc(1)−

∫ 1

0

Wc(s)ds+ c̄

∫ 1

0

sWc(s)ds−
1

2
c̄

∫ 1

0

Wc(s)ds

]
+κ

[
6r(1− r)(1− λ0)

(
c̄

12
+
λ0

2
+
cλ0

12
− c̄λ0

6

)]
= Hc,c̄(r, λ0, κ)− 6r(1− r)

∫ 1

0

Hc,c̄(s, λ0, κ)ds.

The last equality follows from the fact that∫ 1

0

Hc,c̄(s)ds =

∫ 1

0

Wc(s)ds+ c̄

∫ 1

0

∫ s

0

W (l)dl − 1

2
Wc(1)− c̄

2

∫ 1

0

Wc(s)ds

= −
[

1

2
Wc(1)−

∫ 1

0

Wc(s)ds+ c̄

∫ 1

0

sWc(s)ds−
1

2
c̄

∫ 1

0
c(s)ds

]
,

because
∫ 1

0
sW (s)ds =

∫ 1

0
W (s)ds−

∫ 1

0

(∫ s
0
W (l)dl

)
dr (see Tanaka (1996, Ch. 2)), and∫ 1

0

[(
(r − λ0) +

c̄

2
(r − λ0)2

)
I(r > λ0)− r

(
(1− λ0) +

c̄

2
(1− λ0)2

)]
dr

= −(1− λ0)

(
c̄

12
+
λ0

2
+
cλ0

12
− c̄λ0

6

)
. (20)

Proof of Theorem 2.
Consider the estimates µ̃, β̃ и γ̃: µ̃

β̃
γ̃

 =

 g11 g12 g13

g12 g22 g23

g13 g23 g33

−1  h1

h2

h3

 , (21)
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where

g13 = (1− ρ̄)
T∑

t=bλT c+1

{t− bλT c − ρ̄(t− bλT c − 1)},

g23 =
T∑

t=bλT c+1

{t− ρ̄(t− 1)}{t− bλT c − ρ̄(t− bλT c − 1)},

g33 =
T∑

t=bλT c+1

{t− bλT c − ρ̄(t− bλT c − 1)}2,

h3 =
T∑

t=bλT c+1

(yt − ρ̄yt−1){t− bλT c − ρ̄(t− bλT c − 1)}.

Similarly to the proof of Theorem 1 and HLT:

g13 → kc̄λ(λ)

T−1g23 → mc̄λ(λ)

T−1g33 → dc̄λ(λ)

T−1/2h3 ⇒ bc,c̄λ(λ) + κfc,c̄λ(λ0, λ)

Then T−1/2µ̃

T 1/2β̃
T 1/2γ̃

 =

 Tg11 g12 g13

g12 T−1g22 T−1g23

g13 T−1g23 T−1g33

−1  T 1/2h1

T−1/2h2

T−1/2h3


⇒

 c̄2
λ c̄λ + c̄2

λ/2 kc̄λ(λ)
c̄λ + c̄2

λ/2 1 + c̄λ + c̄2
λ/3 mc̄λ(λ)

kc̄λ(λ) mc̄λ(λ) dc̄λ(λ)

−1  ac,c̄λ + κqc,c̄λ(λ0)
bc,c̄λ + κfc,c̄λ(λ0)

bc,c̄λ(λ) + κfc,c̄λ(λ0, λ)


Here again, the estimate µ̃ is not asymptotically negligible, in contrast to HLT.

Thus, the residuals ũt is written as

ũt = (yt − ρ̄yt−1)− µ̃(1− ρ̄)− β̃{t− ρ̄(t− 1)}
−γ̃{t− bλT c − ρ̄(t− bλT c − 1)}I(t > T1).
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Then

T−1/2

t∑
i=2

ũi = T−1/2

t∑
i=2

(ui − ρ̄ui−1) + κ

[
T−1

t∑
i=2

I(r > λ0) + c̄λT
−2

t∑
i=2

DTi−1

]

−c̄λtT−3/2µ̃− T−1/2β̃
t∑
i=2

(c̄λi/T + 1− c̄λ/T )

−T−1/2γ̃
t∑

i=bλT c+1

(c̄λi/T + 1− c̄λ/T − c̄λT1/T )

⇒ Wc(r) + c̄λ

∫ r

0

Wc(r)dr + κ
[
(r − λ0) +

c̄λ
2

(r − λ0)2
]
I(r > λ0)

−c̄λr
{
T−1/2µ̃

}
−
(
c̄λ
r2

2
+ r

){
T 1/2β̃

}
−
(
c̄λ
r2

2
+ r + c̄λ

λ2

2
− λ− c̄λλr

)
I(r > λ0){T 1/2γ̃}
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Figure 1: Asymptotic power-adjusted size: c = 10

St : , Stb : , S(tPY ) : · · · , S(tλ) : ·
Stb : , AS(tλ) : , AS(tPY ) : , IS(tλ) : · · · , IS(tPY ) : · · · , MS : ·
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Figure 2: Asymptotic power-adjusted size: c = 20

St : , Stb : , S(tPY ) : · · · , S(tλ) : ·
Stb : , AS(tλ) : , AS(tPY ) : , IS(tλ) : · · · , IS(tPY ) : · · · , MS : ·
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Figure 3: Asymptotic power-adjusted size: c = 30

St : , Stb : , S(tPY ) : · · · , S(tλ) : ·
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Figure 4: Finite sample power-adjusted size, T = 150: c = 10
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Figure 5: Finite sample power-adjusted size, T = 150: c = 20

St : , Stb : , S(tPY ) : · · · , S(tλ) : ·
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Figure 6: Finite sample power-adjusted size, T = 150: c = 30

St : , Stb : , S(tPY ) : · · · , S(tλ) : ·
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