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Abstract

In this paper we propose tests based on GLS-detrending for testing the null hypothesis of
deterministic seasonality. Unlike existing tests for deterministic seasonality, our tests do not
suffer from asymptotic size distortions under near integration. We also investigate the behav-
ior of the proposed tests when the initial condition is not asymptotically negligible.
Key words: Stationarity tests, KPSS test, seasonality, seasonal unit roots, deterministic sea-
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1 Introduction

Deterministic seasonality describes the behavior of a time series in which the unconditional means
change in different seasons of the year. One way to record this is a seasonal dummies representa-
tion. On the other hand, the presence of a seasonal unit root in the data could distort the seasonal
correction procedure for the time series, so dividing the processes using deterministic seasonality
and seasonal unit root processes is important in the time series analysis. Most of the work, fol-
lowing Hylleberg et al. (1990) (hereinafter HEGY), focuses on testing for seasonal unit roots at
different frequencies against the alternative that all the roots are less than one. This procedure is
related to the testing of the unit root (at zero frequency) against the alternative of stationarity in
the nonseasonal case.

Similar to the nonseasonal case (the stationarity test against the alternative hypothesis of
a unit root, see Kwiatkowski et al. (1992)) the procedures for deterministic seasonality testing
against the case of the presence of at least one seasonal unit root has also been developed. The
problem of deterministic seasonality testing was first considered by Canova and Hansen (1995).
Taylor (2003a) analyzed a more general formulation in the context of the construction of locally

∗E-mail: antonskrobotov@gmail.com

1



mean most powerful invariant (LMMPI) tests. Taylor (2003b) also shows that under the presence
of unattended unit roots, i.e. if the null hypothesis is tested against the alternative of a specific
number of unit roots, but actually the series contains a number of additional roots at other fre-
quencies, then the test statistic under the null will be Op((TST )−1). This means the test will be
conservative (and size distortion will increase as the sample size increases). To solve this problem,
the author proposed the use of pre-filtered data similar to HEGY test. Kurozumi (2002) investi-
gated the limiting properties of the Canova and Hansen test. The author has found the limiting
distributions of tests by using the Fredholm approach (see Tanaka (1996)), and also has shown
that the power of the tests depends not only on the local parameter, c, but also on the reciprocal of
the spectral density of the stationary component of the time series at frequency π or π/2.

There are alternative approaches to testing for deterministic seasonality. In Caner (1998),
in contrast to the non-parametric approach proposed by Canova and Hansen (1995) and Tay-
lor (2003a), the parametric autocorrelation correction of errors according to the Leybourne and
McCabe (1994) principle is used (but under stronger assumptions). More precisely, Caner (1998)
uses the residuals from regression not only on the deterministic component, but also on a sufficient
number of lagged dependent variables. In this case, there is no need to construct a nonparametric
estimator of long-run variance and a conventional variance estimate of pre-whitened data should
be used. The distributions of the test statistics coincide with the results obtained in Canova and
Hansen (1995) and Taylor (2003a). Another approach for deterministic seasonality testing was
developed by Tam and Reinsel (1997, 1998) in the context of testing for the unit root in the MA
component of a time series. For comparisons of this approach with the Canova and Hansen tests,
see Ghysels and Osborn (2001, Sections 2.4.3, 2.4.4).

One problem is that under near integration all seasonal unit root tests at different frequencies
will have an asymptotic size equal to unity (see Müller (2005) for the nonseasonal case). One solu-
tion to this problem (in the nonseasonal case) has been proposed by Harris et al. (2007) (hence-
forth HLM), where the authors used a (quasi) GLS-detrending to construct the test statistics.
Here we generalize their approach to a seasonal case and we test the hypothesis of deterministic
seasonality (local to a seasonal unit root) against the alternative of a seasonal unit root.

This paper is organized as follows. Section 2 describes the data generating process (DGP) and
assumptions about errors and initial conditions (the assumptions about the initial condition follow
from Harvey et al. (2008) (henceforth HLT)). In Section 3 we propose the procedure of seasonal
GLS-detrending for stationarity test statistics. The Monte-Carlo simulation results (asymptotic
and finite sample) are given in Section 4. The results are formulated in the Conclusion.

2 Model

Consider quarterly DGP such that

y4n+s = µ4n+s + u4n+s, s = −3, . . . , 0, n = 1, . . . , N, (1)

a(L)u4n+s = ε4n+s, s = −3, . . . , 0, n = 2, . . . , N, (2)

where a(L) = 1−
∑4

j=1 ajL
j is a fourth order autoregressive polynomial, L is the lag operator such

that L4j+ky4n+s = y4(n−j)+s−k, T = 4N is the number of observations (N is the span in years of
the sample data). The errors ε4n+s are assumed to be a zero mean process, the long-run variance
of which is bounded and strongly positive at zero and seasonal spectral frequencies, ωk = 2πk/4,
k = 0, 1, 2.
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The deterministic component µ4n+s = µt is defined as a linear combination of spectral indicator
variables, corresponding to the zero and seasonal frequencies, zt,0 = 1, zt,1 = (cos[2πt/4], sin[2πt/4])′

and zt,2 = (−1)t. Define the vector Zt = (zt,0, z
′
t,1, zt,2)′ and the deterministic component µt =

d′ξZt,ξ for three possible cases, ξ = 1, . . . , 3 (see Smith and Taylor (1998)). The first case corre-
sponds to the constants at zero and seasonal frequencies, Zt,1 = Zt, the second case also allows
for the trend at zero frequency, Zt,2 = (Z ′t, zt,0t)

′, the third case allows for the trend at zero and
seasonal frequencies, Zt,3 = (Z ′t, tZ

′
t)
′.

The polynomial a(L) can be factorized as
∏2

k=0 ωk(L) = (1−a0L)(1−2β1L+(a2
1 +β2

1)L2)(1−
a2L). We are interested in testing for deterministic seasonality (local to the seasonal unit root), in
other words to test the hypothesisH0 : ci ≥ c̄i > 0 for all i in ai = 1− ci/T , against the alternative
about the unit root at least one of the frequencies, i.e. H1 : ci = 0 for at least one i, where c̄i is
the minimal amount of mean reversion for the specific frequency under the null hypothesis. The
null hypothesis H0 can be partitioned as H0 =

⋂2
k=0 H0,ck , where H0,ci : ai = 1 − ci/T , i = 0, 2

and H0,c1 : a1 = 1 − c1/T , β1 = 0. In other words, testing the null hypothesis of stationarity
(local to the unit root) at zero frequency, ω0 = 0, against the alternative of a unit root at this
frequency is equivalent to testing H0,c0 : c0 ≥ c̄0 > 0 against H0,c0 : c1 = 0. Similarly, testing
the null hypothesis for stationarity (local to unit root) at the Nyquist frequency, ω2 = π, against
the alternative of a unit root at this frequency is equivalent to testing H0,c2 : c2 ≥ c̄2 > 0 against
H2,c2 : c2 = 0, and testing the null hypothesis of stationarity (local to unit root) at seasonal
harmonic frequencies, (π/2, 3π/2), against the alternative of unit roots at these frequencies is
equivalent to testing H0,c1 : c1 ≥ c̄1 > 0 against H1,c1 : c1 = 0.

This approach differs to the usual testing for deterministic seasonality, where either the local
asymptotic behavior is not considered or parameters related to the signal-to-noise ratio are as-
sumed to be local (see Taylor (2003a)). The reason for considering near integration is the same
as in Müller (2005): it explains the increasing size in finite samples for highly autocorrelated sta-
tionary series. As demonstrated in Müller (2005) in the context of nonseasonal models, the con-
ventional KPSS test with the bandwidth parameter in the long-run variance estimator increasing
at a slower rate than the length of the sample leads to an asymptotic size equal to unity under the
null hypothesis of near integration. It is easy to show that the same problem arises in the seasonal
models, if we use the tests of Canova and Hansen (1995), Taylor (2003a) and Taylor (2003b), in-
ter alia. One way to solve this problem will be considered in the next section where we extend the
HLM test to a seasonal case.

Also we set the initial condition ui, i = 1, . . . , 4, according to Assumption 1 (see HLT).

Assumption 1 Under H0 with c < 0, the initial conditions are generated according to

ui = αi

√
ω2
ε/(1− ρ2

N), i = 1, . . . , 4, (3)

where ρN = 1 − c/N and αi ∼ IN(µα,iI(σ2
α = 0), σ2

α), i = 1, . . . , 4, independent of ε4n+s,
s = −3, . . . , 0, n = 2, . . . , N . For c = 0, under H1, the initial conditions can be set equal to
zero, ui = 0, i = 1, . . . , 4, without loss of generality, due to the exact similarity of the tests
to the initial conditions in this case.

In this assumption αi controls the magnitude of the initial condition in season i relative to the
magnitude of the standard deviation of a stationary seasonal AR(1) process with parameter ρN
and innovation long-run variance ω2

ε . The form given for the ui allow the initial conditions to be
either random and ofOp(N

1/2), or fixed and ofO(N1/2) depending on the value of variance σ2
α (> 0

or 0, respectively).
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3 Deterministic seasonality testing based on GLS-detrending

HLM proposed the following test using a (quasi) GLS-detrended series. More precisely, let ũξt be
the residuals from regression yc̄ = yt − ρ̄Tyt−1 on Zi,c̄ = zt − ρ̄T zt−1, t = 2, . . . , T , where zt = 1 in
constant case (ξ = µ) and zt = (1, t)′ in trend case (ξ = τ ) and ρ̄T = 1− c̄/T . Then the Sξ(c̄) test
is constructed as following:

Sξ(c̄) =
T−2

∑T
t=2 (

∑t
j=2 ũ

i
j)

2

ω̂2
, (4)

where the kernel based long-run variance estimator ω̂2 is calculated by using GLS-detrended
residuals ũit.

For a seasonal time series consider the following GLS-transformation (see also Rodrigues and
Taylor (2007) in the context of seasonal unit root testing), by using a vector c = (c̄0, c̄1, c̄2). Let
the series yc and Zξ,c be defined as

yc = (∆cyS+1, . . . ,∆cyT )′

Zξ,c = (∆cZS+1,ξ, . . . ,∆cZT,ξ)
′,

where

∆c = 1−
S∑
j=1

acjL
j =

(
1−

(
1− c̄0

T

)
L
)(

1 +
(

1− c̄2

T

)
L
)(

1 +
(

1− c̄1

T

)2

L2

)
(respectively, ∆0 = 1 − LS). GLS-detrended series are the OLS-residuals from regression yc on
Zξ,c. Define these residuals as ũt,ξ.

Before constructing the test statistics, we note that one of the basic principles of unit root
testing in a seasonal time series is that when we test for a unit root at a specific frequency, the
data should be prefiltered to reduce the order of integration at each of the remaining (unattended)
frequencies by one (see HEGY and Taylor (2003b)). If we are testing the stationarity against the
presence of a unit root at zero frequency it is necessary to use the data y0,t = (1 +L)(1 +L2)yt in-
stead of yt, and then perform GLS-detrending. Accordingly for testing the stationarity at Nyquist
frequency it is necessary to use the data y2,t = (1 − L)(1 + L2)yt, and for testing the stationarity
at the seasonal harmonic frequencies it is necessarily to use the data y1,t = (1− L)(1 + L)yt. We
define the corresponding GLS-detrended residuals ũjt,ξ depending on j = 0, 1, 2, corresponding to
zero frequency, seasonal harmonic frequencies and the Nyquist frequency, respectively.

Thus, a final test can be written as follows:

Sξ,j(c) = T−2tr

[
(C ′jΩ̂ZCj)

−1C ′j

T∑
t=1

(
t∑

s=1

ũjs,ξZs

)(
t∑

s=1

ũjs,ξZ
′
s

)
Cj

]
, (5)

where Ω̂Z is a consistent long-run variance estimator of Ztεt, where

Ω̂Z =
T−1∑

l=−T+1

k

(
j

ST

)
Γ̂(l), (6)

with the bandwidth parameter ST →∞, ST/T 1/2 → 0 and the autocovariance estimator

Γ̂(l) = T−1

T∑
s=l+1

ũjs,ξZtũ
j
s−l,ξZ

′
s−l, Γ̂(−l) = Γ̂(l), l ≥ 0. (7)
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The matrix Cj depends on the frequencies at which we test the stationarity. For zero frequency
C0 is the first column of identity matrix I4, for Nyquist frequency C2 is the fourth column of I4, for
seasonal harmonic frequencies C1 is the matrix consisting of the second and third columns of I4.
For testing the stationarity at all seasonal frequencies the C12 matrix contains the second, third
and forth columns, and for testing the stationarity at all seasonal and nonseasonal frequencies
C012 is the identity matrix I4.

The following proposition gives the limiting distributions of all test statistics to test the sta-
tionarity (local to the seasonal unit root) at specific frequencies under the null and alternative
hypotheses.

Proposition 1 Let {ySn+s} be generated as (1)-(2) under Assumption 1. For i = 1, . . . , 4 we
define

Kic(r) =

{
Wi(r), if c = 0,

ᾱi(e
rc − 1)(−2c)−1/2 +Wic(r), if c < 0,

where Wi(r), i = 1, . . . , 4, are independent standard Wiener processes, Wic(r), i = 1, . . . , 4,
are independent Ornstein-Uhlenbeck processes, and the spectral magnitudes ᾱi are defined
as

ᾱ1 = (α1 + α2 + α3 + α4)/2,

ᾱ2 = (−α1 + α2 − α3 + α4)/2,

ᾱ3 = (α4 − α2)/
√

2,

ᾱ4 = (α3 − α1)/
√

2.

Then

Sj(c̄j) ⇒
∫ 1

0

Hjc,c̄j(r)
2dr, j = 0, 2, (8)

S1(c̄1) ⇒
∫ 1

0

(H1c,c̄1(r) +H3c,c̄1(r))
2dr, (9)

S12(c̄1) ⇒
∫ 1

0

(H1c,c̄1(r) +H2c,c̄2(r) +H3c,c̄1(r))
2dr, (10)

S012(c̄1) ⇒
∫ 1

0

(H0c,c̄0(r) +H1c,c̄1(r) +H2c,c̄2(r) +H3c,c̄1(r))
2dr, (11)

where

Hic,c̄j(r) = Kic(r) + c̄j

∫ r

0

Kic(s)ds− r
[
Kic(1) + c̄j

∫ 1

0

Kic(s)ds

]
,

i = 1, . . . , 4, for j = 0, ξ = 0 and for j = 1, 2, ξ = 0, 1, and

Hic,c̄j(r) = Hic,c̄j(r)− 6r(1− r)
∫ 1

0

Hic,c̄j(s)ds,

i = 1, . . . , 4, for j = 0, ξ = 1, 2 and for j = 1, 2, ξ = 3, and⇒ denotes weak convergence.
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The proof of this proposition follows from HLM, Taylor (2003a) and HLT and is omitted for
brevity. Similar to HLM, it can be shown that for cj = c̄j the limiting distribution of the Sj test
coincides with the results obtained in Canova and Hansen (1995) and Taylor (2003a) (under the
null hypothesis) and does not depend on initial conditions. Similar results will be occurred for
c1 = c̄1 and c2 = c̄2 for the S12 test and for c0 = c̄0, c1 = c̄1 and c2 = c̄2 for the S012 test. Critical
values are given in Tables 1-3.

Also it can be noted that the limiting distributions depend not on the values of the initial con-
ditions αi, but on the so-called spectral initial conditions ᾱi in the terminology of HLT. Hence for
some given nonzero initial conditions, their linear combination may be zero and some tests will
not depend on their magnitudes.

4 Monte-Carlo simulations

4.1 Asymptotic results

In this subsection, we analyze the asymptotic behavior of S0, S2, S1, S12 and S012 tests under
various magnitudes for the initial conditions1. Figure 1 shows results for the case of a fixed initial
condition (σ2

α = 0 in Assumption 1), while Figure 2 shows results for the case of a random initial
condition (σ2

α > 0 in Assumption 1). Everywhere we consider a model with seasonal constants
and a nonseasonal trend (since this model is most often used in practice) and use c̄0 = 13.5, c̄2 = 7,
c̄1 = 3.75.

Parts (a), (b) and (c) in Figure 1 represent, respectively, asymptotic size (a(L) = 1 − (1 −
c/N)L4, c > 0) and power (c = 0) of S0, S2 and S1 tests for various magnitudes of initial conditions
ᾱ1, ᾱ2 and ᾱ3 = ᾱ4, respectively. The magnitudes of the initial conditions ᾱi = |µ| = {0, 2, 4, 6},
i = 1, . . . , 4 are used for all the tests being considered. Parts (d), (e) and (f) represent results for the
S12 test under: ᾱ2 = |µ|, ᾱ3 = ᾱ4 = 0; ᾱ2 = 0, ᾱ3 = ᾱ4 = |µ|; ᾱ2 = ᾱ3 = ᾱ4 = |µ|, respectively.
Parts (g), (h) and (i) represent results for the S012 test under: ᾱ1 = |µ|, ᾱ2 = ᾱ3 = ᾱ4 = 0;
ᾱ1 = ᾱ2 = 0, ᾱ3 = ᾱ4 = |µ|; ᾱ1 = ᾱ2 = ᾱ3 = ᾱ4 = |µ|, respectively. Corresponding results for
the case of random initial conditions are given in Figure 2 for σ2

α = |µ| = {0, 2, 4, 6}, i = 1, . . . , 4.
In all cases critical values are obtained at cj = c̄j .

The size curves of S0, S2 and S1 tests are tangent to each other for different initial conditions
at points cj = c̄j , which confirms the invariance with respect to the initial conditions of each of
the tests at c = c̄j . When c < c̄j the size of each test grows as the corresponding spectral initial
condition is increased, although the size distortion is less pronounced for the S0 test (intuitively
because a larger value is used for c̄j). For c > c̄j the size of the test is lower that the nominal one,
except for the S1 test with |µ| = 6 (because a very small value of c̄j is used). Similar behavior is
observed for S12 and S012.

For the case of random initial conditions, the size distortions for c < c̄j are smaller that in case
of fixed initial conditions, but larger than for c > c̄j .

1Here and in the following subsection results are obtained by simulations of the limiting distributions in Propo-
sition 1, approximating the Wiener process using i.i.d.N(0, 1) random variates and with integrals approximated by
normalized sums of 1,000 steps, with 50,000 replications.
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4.2 Finite sample comparisons

In this subsection we investigate the finite sample behavior of tests based on DGP (1)-(2) and
Assumption 1. Results are presented for T = 300 with 10,000 replications and, without loss
of generality, with the absence of the deterministic term. The long-run variance estimator (6) is
constructed by using a quadratic spectral window and automatic bandwidth selection based on
AR(1) approximation (see Andrews (1991)).

Figures 3-4 show the size and power of the tests (the notation is the same as in Section 4.1)
for the cases of fixed and random initial conditions, respectively. The results are similar to the
asymptotic case although the power becomes slightly lower. However all tests control size well
under the very close to unity autoregression parameter. To increase the power, it can sacrifice this
size control and use a higher c̄j , which will lead to control the size at a higher c. One alternative is
to use parameters c̄j such that the asymptotic size of S0, S2 and S1 tests (e.g., in case of a seasonal
constant and nonseasonal trend) is equal to 0.5 at c0 = 13.5, c2 = 7, c1 = 3.75. These new values
of c̄j are equal to c̄0 = 29.55, c̄2 = 20.05 and c̄1 = 10.7 (in case of seasonal trend c̄1 = 17.75 and
c̄2 = 29.55). Corresponding values of power in finite samples (T = 300) for S0, S2, S1, S01 and S012

tests will then be equal to 0.40, 0.58, 0.58, 0.57 and 0.62l, respectively. Of course, the researcher
can choose any values of c̄j for his desired trade-off between size and power.

5 Conclusion

In this paper, we consider GLS-detrendng in the context of deterministic seasonality testing (lo-
cal to a seasonal unit root) against the alternative of a seasonal unit root. Unlike existing tests,
the proposed tests do not suffer from asymptotic size distortions in the local to unity autoregres-
sion parameters and, at the same time, have a well-controlled size for a given level of (seasonal)
mean reversion. The behavior of the proposed tests was also analyzed for fixed and random initial
conditions of various magnitudes.
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Table 1. Critical values at the ξ significance level, Case 1 (seasonal constant with no trend),
c̄0 = 7, c̄2 = 7, c̄1 = 3.75

T ξ = 0.10 ξ = 0.05 ξ = 0.01

T = 152 S0 0.303 0.374 0.501
S2 0.301 0.372 0.509
S1 0.506 0.569 0.679
S12 0.677 0.738 0.834
S012 0.825 0.878 0.966

T = 300 S0 0.323 0.414 0.595
S2 0.323 0.413 0.599
S1 0.554 0.646 0.828
S12 0.756 0.854 1.036
S012 0.932 1.026 1.200

T = 600 S0 0.335 0.433 0.668
S2 0.337 0.436 0.667
S1 0.582 0.694 0.922
S12 0.797 0.921 1.158
S012 0.993 1.121 1.359

T = 900 S0 0.342 0.449 0.694
S2 0.342 0.445 0.687
S1 0.591 0.715 0.987
S12 0.812 0.946 1.223
S012 1.018 1.158 1.436
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Table 2. Critical values at the ξ significance level, Case 2 (seasonal constant, nonseasonal
trend), c̄0 = 13.5, c̄2 = 7, c̄1 = 3.75

ξ = 0.10 ξ = 0.05 ξ = 0.01

T = 152 S0 0.104 0.119 0.151
S2 0.302 0.371 0.502
S1 0.506 0.566 0.670
S12 0.678 0.739 0.838
S012 0.783 0.844 0.942

T = 300 S0 0.110 0.131 0.177
S2 0.323 0.412 0.598
S1 0.554 0.644 0.823
S12 0.757 0.855 1.037
S012 0.849 0.949 1.133

T = 600 S0 0.114 0.139 0.193
S2 0.337 0.436 0.666
S1 0.582 0.694 0.920
S12 0.797 0.921 1.159
S012 0.881 1.007 1.248

T = 900 S0 0.116 0.140 0.197
S2 0.342 0.445 0.686
S1 0.591 0.714 0.987
S12 0.812 0.946 1.223
S012 0.893 1.029 1.312

Table 3. Critical values at the ξ significance level, Case 3 (seasonal constant, seasonal trend),
c̄0 = 13.5, c̄2 = 13.5, c̄1 = 8.65

ξ = 0.10 ξ = 0.05 ξ = 0.01

T = 152 S0 0.104 0.120 0.151
S2 0.103 0.119 0.150
S1 0.193 0.208 0.237
S12 0.268 0.284 0.314
S012 0.343 0.361 0.404

T = 300 S0 0.110 0.131 0.177
S2 0.110 0.130 0.174
S1 0.196 0.219 0.264
S12 0.275 0.300 0.346
S012 0.347 0.372 0.416

T = 600 S0 0.114 0.139 0.193
S2 0.115 0.139 0.192
S1 0.203 0.231 0.288
S012 0.285 0.317 0.382
S012 0.360 0.393 0.457

T = 900 S0 0.116 0.140 0.197
S2 0.116 0.142 0.201
S1 0.205 0.236 0.301
S12 0.289 0.324 0.393
S012 0.367 0.402 0.475
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Figure 1. Asymptotic size, fixed initial condition

µ = 0 : , µ = 2 : , µ = 4 : · , µ = 6 : · · ·
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Figure 2. Asymptotic size, random initial condition, αi ∼ N(0, σ2
α), i = 1, 2, 3, 4

µ = 0 : , µ = 2 : , µ = 4 : · , µ = 6 : · · ·
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0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

c
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Figure 3. Finite sample size, fixed initial condition

µ = 0 : , µ = 2 : , µ = 4 : · , µ = 6 : · · ·
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Figure 4. Finite sample size, random initial condition, αi ∼ N(0, σ2
α), i = 1, 2, 3, 4

µ = 0 : , µ = 2 : , µ = 4 : · , µ = 6 : · · ·

15


