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Abstract

In this paper we investigate the behavior of stationarity tests proposed by Müller (2005) and
Harris et al. (2007) with uncertainty over the trend and/or initial condition. As different tests
are efficient for different magnitudes of local trend and initial condition, following Harvey et al.
(2012) we propose decision rule based on the rejection of null hypothesis for multiple tests.
Additionally, we propose a modification of this decision rule, relying on additional information
about the magnitudes of the local trend and/or the initial condition that is obtained through
pre-testing. The resulting modification has satisfactory size properties under both uncertainty
types.
Key words: Stationarity test, KPSS test, uncertainty over the trend, uncertainty over the
initial condition, size distortion, intersection of rejection decision rule.
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1 Introduction

The influence of linear trend and/or the initial condition can be very important in unit root testing.
In recent works, Harvey et al. (2009) and Harvey et al. (2012) (hereafter HLT, see also Harvey
et al. (2008)) considered the issue of deterministic trend inclusion in the unit root test and investi-
gated the behavior of tests with different initial conditions. Harvey et al. (2009) showed that under
uncertainty over the linear trend, the optimal unit root test is a simple union of rejections of the two
tests (i.e., the null hypothesis of the unit root is rejected, if it is rejected by at least one of the tests):
the first with inclusion of the linear trend, the second only with the constant. Both of these tests
need to be effective for their respective types of deterministic components in the absence of large
initial condition. Simultaneously, knowing the type of deterministic components (i.e. whether the
trend is present in the data or not) and uncertainty over the initial condition, the union of rejection

∗We thank two anonymous referees, Vladimir Nosko and Marina Turuntseva for helpful comments and recom-
mendations for improvement earlier version of this paper.
†E-mail: antonskrobotov@gmail.com

1



testing strategy of two tests (one effective at a small initial condition, and the second effective at a
large initial condition for a given type of deterministic component) will be the best. HLT extended
the procedure by assuming uncertainty over both the trend and initial condition and suggested a
union of rejection testing strategy for all four tests. Additionally, HLT also suggested a modifi-
cation of this test with pre-testing of the linear trend coefficient and the initial condition. Then, if
there was evidence of a large local trend and/or evidence of a large initial condition, it was more
likely that a trend and/or a large initial condition were actually present in the data. Thus, this
information can be used to construct the union of rejection testing strategy.

There is a need of a similar procedure for stationarity tests, as hypothesis testing opposed to
unit root is important for confirmatory analysis (see, e.g., Maddala and Kim (1998, Ch. 4.6)).
Harris et al. (2007) (hereafter HLM) proposed a modification of the standard Kwiatkowski et al.
(1992) test (hereafter KPSS) in the near integration using (quasi) GLS-detrending1. Asymptotic
properties of the test in the constant case were compared with point-optimal test proposed by
Müller (2005) for different initial conditions. The results revealed that in the case of small initial
conditions the test proposed in Müller (2005) is effective. Given a large, or even moderate initial
conditions, this test has serious liberal size distortions, tending to unity for strongly autocorrelated
stationary data generating processes. Additionally, it is dominated by the HLM test with large
initial conditions.

In this paper, we consider the asymptotic properties of stationarity tests proposed by HLM
and Müller (2005) following the approach of HLT. In Section 2 we introduce the HLM test and
point-optimal test proposed in Müller (2005) and obtain corresponding limiting distributions as-
suming local behavior of the trend. Additionally, we use parametrization of the initial condition
following the Müller and Elliott (2003) approach. In Section 3.1 we analyze these tests in the
case of an asymptotically negligible initial condition, assuming the local behavior of the trend.
As in HLM, in this case the asymptotic size curves show that the point-optimal tests of Müller
(2005) is superior to the HLM test. Additionally, the test with only constant has serious liberal
size distortions, driven by increase of the magnitude of the local trend parameter. We propose to
use the intersection of rejections testing strategy 2 of two tests with and without a trend in deter-
ministic component, i.e., we reject the null hypothesis, if both tests simultaneously reject it. We
also propose a modification of this decision rule, using pre-testing of a trend parameter and using
this information to perform only the test with trend, if there is evidence of a large local trend. As
simulations show, this procedure has advantages over a simple intersection rejection of two test
(with- and without-trend). In Section 3.2 we analyze a similar procedure, assuming knowledge
of deterministic term, but no knowledge of initial condition magnitude. In this case, as in Sec-
tion 3.1, simple intersection of rejections of corresponding tests is the best solution, as well as
the modification with pre-testing of the initial condition. In Section 3.3 we address the composite
problem of uncertainty over both the linear trend and initial condition. Following HLT, we propose
an intersection of rejections testing strategy consisting of all four test statistics, as well as modi-
fication in the pre-testing the trend magnitude and initial condition. Asymptotic analysis reveals

1Müller (2005) revealed that the use of conventional KPSS test with the bandwidth parameter in the long-run
variance estimator increasing at a slower rate than the length of the sample, leads to an asymptotic size equal to unity
under the null hypothesis about near integration. Therefore, in our analysis (local to unit root) we do not consider
conventional OLS-detrended KPSS test.

2HLT used the “union of rejections” term, and their test rejected the null hypothesis, if at least one of the tests
rejected it. As we consider stationarity tests in our procedure, we reject the null hypothesis if all of tests reject it, and
we call this strategy the “intersection of rejections”.
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considered modifications as superior to the use of the individual tests with varying parameters in
the local trend and the initial condition.

In our analysis, the size of all tests was compared to a fixed power, where critical values were
obtained for the integrated process, as well as with zero trend parameters and zero initial condi-
tions. In Section 4 we obtain the critical values and scaling constants for fixed amount of mean
reversion under the stationary null hypothesis and discuss the behavior of tests in finite samples
(finite sample results are available in the online Appendix to this paper). Results obtained in the
course of this investigation are formulated in the Conclusion section.

2 The Model

We consider the data generating process (DGP) as

yt = µ+ βt+ ut, t = 1, . . . , T, (1)

ut = ρut−1 + εt, t = 2, . . . , T, (2)

where the process εt is taken to satisfy the standard assumptions considered by Phillips and Solo
(1992):

Assumption 1 Let

εt = γ(L)et =
∞∑
i=0

γiet−i,

with γ(z) 6= 0 for all |z| ≤ 1 and
∑∞

i=0 i|γi| < ∞, where et is the martingale-difference se-
quence with conditional variance σ2

e and supt E(e4
t ) <∞. Short-run and long-run variances

are defined as σ2
ε = E(ε2

t ) and ω2
ε = limT→∞ T

−1E
(∑T

t=1 εt

)2

= σ2
eγ(1)2, respectively.

In contrast to the conventional KPSS test, we use the local to unity behavior of the parameter
ρ, i.e., ρ = ρT = 1 − c/T , where c ≥ 0. We consider the local asymptotics primarily because it
provides a more accurate approximation for small samples than the standard asymptotics when
the series contains a large autoregressive root frequently observed in many macroeconomic time
series. We test the null of stationarity (local to unit root) H0 : c ≥ c̄ > 0 against alternative
hypothesis H1 : c = 0, where c̄ is the minimal amount of mean reversion under the stationary null
hypothesis.

Conventional KPSS test with the bandwidth parameter in the long-run variance estimator
increasing at a slower rate than the length of the sample leads to an asymptotic size equal to unity
under the null hypothesis about near integration (see Müller (2005)). Thus, we consider two tests
having non-degenerate limiting distribution under local to unit root behavior of autoregressive
parameter. The first was suggested by Müller (2005). Following Müller and Elliott (2003), Müller
(2005) proposed an asymptotically optimal test statistic Qµ(c̄) for the constant case and Qτ (c̄) for
the trend case to discriminate between a null hypothesis ρT = 1− c/T and ρT = 1. This statistic
is constructed as:

Qi(c̄) = qi1(ω̂−1
ε T−1/2ûiT )2 + qi2(ω̂−1

ε T−1/2ûi1)2

+ qi3(ω̂−1
ε T−1/2ûiT )(ω̂−1

ε T−1/2ûi1) + qi4ω̂
−2
ε T−2

T∑
t=1

(ûit)
2, (3)
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where ûit are OLS residuals from regression of yt on dt, where dt = µ in the constant case and
dt = µ + βt in the trend case, qµ1 = qµ2 = c̄(1 + c̄)/(2 + c̄), qµ3 = −2c̄/(2 + c̄), qµ4 = c̄2 and
qτ1 = qτ2 = c̄2(8 + 5c̄ + c̄2)/(24 + 24c̄ + 8c̄2 + c̄3), qτ3 = 2c̄2(4 + c̄)/(24 + 24c̄ + 8c̄2 + c̄3), qτ4 = c̄2.
Additionally, ω̂2

ε is any consistent estimator of long-run variance of εt using residuals from an
AR(1) regression of ûit.

3

The second test was proposed by HLM. It uses the (quasi) GLS-detrended series. Specifically,
ũit, i = µ, τ are OLS residuals from regression of yc̄ = yt−ρ̄Tyt−1 onZc̄ = zt−ρ̄T zt−1, t = 2, . . . , T ,
where zt = 1 in the constant case and zt = (1, t)′ in the trend case. Then, the Si(c̄) test statistic is
constructed as

Si(c̄) =
T−2

∑T
t=2 (

∑t
j=2 ũ

i
j)

2

ω̂2
ε

, (4)

where kernel-based long-run variance estimator ω̂2
ε is calculated using GLS-detrended residuals

ũit.
4

We consider the following two assumption, specifying the behavior of trend coefficient β and
initial condition u1.

Assumption 2 The trend coefficient β satisfies β = βT = κωεT
−1/2, where κ is some finite

constant.

Assumption 3 The initial condition u1 satisfies u1 = ξ = α
√
ω2
ε/(1− ρ2

T ), where ρT = 1 −
c/T , c > 0. In unit root case, c = 0, the initial condition is equal to zero, i.e. all tests are
invariant to α.

HLM showed that in the case of small initial conditions the Qi(c̄) test is efficient, in terms of
its smaller size, in comparison with the Si(c̄) test. However, for large initial conditions Qi(c̄) has
serious size distortion and is strictly dominated by Si(c̄) test. One could also consider the optimal
Qi(g, k) test proposed by Elliott and Müller (2006) and analyzed by HLM in a stationarity testing
context. However, as it was shown in HLM, this test is strictly dominated by Qi(c̄) test for small
initial conditions and by Si(c̄) test for large initial conditions. Thus, we do not use it in further
consideration. Similarly, as will be shown in Section 3.1, in the absence of trend, effective tests
are those that do not account for the trend in construction, while these tests will have a serious
size distortion in the presence of a trend in DGP.

The following lemma summarizes limiting distributions of four tests under Assumptions 1-3.

Lemma 1 Let {yt} be generated as in (1) and (3) and Assumptions 1-3 be satisfied. Then
under ρT = 1− c/T , 0 ≤ c <∞

Qµ(c̄) ⇒ qµ1

(
Kµ
c (1) +

κ

2

)2

+ qµ2

(
Kµ
c (0)− κ

2

)2

+ qµ3

(
Kµ
c (1) +

κ

2

)(
Kµ
c (0)− κ

2

)
+ qµ4

∫ 1

0

(
Kµ
c (r) + κ(r − 1

2
)

)2

dr, (5)

Qτ (c̄) ⇒ qτ1K
τ
c (1)2 + qτ2K

τ
c (0)2 + qτ3K

τ
c (1)Kτ

c (0) + qµ4

∫ 1

0

Kτ
c (r)dr, (6)

3Kernel-based long-run variance estimator proposed by (Müller, 2005) and used by HLM leads to very poor finite
sample properties of the tests under negative moving average errors. In unreported simulations (results made available
upon request) we found that autoregressive long-run variance estimator leads to satisfactory finite sample properties.

4Note that this estimator has satisfactory finite sample properties in unreported finite sample simulations.

4



Sµ(c̄) ⇒
∫ 1

0

Hc,c̄,α,κ(r)
2dr, (7)

Sτ (c̄) ⇒
∫ 1

0

(
Hc,c̄,α,0(r)− 6r(1− r)

∫ 1

0

Hc,c̄,α,0(s)ds

)2

dr, (8)

Here

Kµ
c (r) = Kc(r)−

∫ 1

0

Kc(s)ds,

Kτ
c (r) = Kµ

c (r)− 12

(
r − 1

2

)∫ 1

0

(
s− 1

2

)
Kc(s)ds,

Hc,c̄,α,κ(r) = Kc(r) + c̄

∫ r

0

(Kc(s) + κs)ds− r
[
Kc(1) + c̄

∫ 1

0

(Kc(s) + κs)ds

]
,

Kc(r) =

{
α(e−rc − 1)(2c)−1/2 +Wc(r), c > 0

W (r), c = 0
,

whereWc(r) =
∫ r

0
e−(r−s)cdW (s) is a Ornstein-Uhlenbeck process,W (r) is a standard Wiener

process, and⇒ denotes weak convergence.

The proof of (5) is similar to Harvey et al. (2009), the proof of (7) is given in the Appendix.
Proofs of (6) and (8) are standard and use FCLT and CMT. Also, following HLM (see also Müller
and Elliott (2003) and Elliott and Müller (2006)), we set c̄ = 10 for Qµ(c̄) and Sµ(c̄) statistics and
c̄ = 15 for Qτ (c̄) and Sτ (c̄) statistics.
Remark 1 Note that the Qτ (c̄) and Sτ (c̄) are invariant to the trend magnitude while the limiting
distributions of Qµ(c̄) and Sµ(c̄) explicitly depend on the local drift parameter κ.
Remark 2 Under a fixed nonzero trend of the form β = κωε 6= 0 it is easy to show that the Qµ(c̄)
and Sµ(c̄) are both Op(T ), i.e. diverge to infinity. This leads to the fact that these tests have size
equal to unity for all c.

3 Asymptotic analysis of stationarity tests

3.1 Asymptotic behavior under a local trend

Consider a case when the initial condition is u1 = op(T
1/2). Then, in limiting distributions ob-

tained in Lemma 1 the process Kc(r) is simply replaced by Ornstein-Uhlenbeck process Wc(r).
Figures 1(a)-(d) show asymptotic size for c ∈ [0, 20], where the critical conditions are obtained for
test comparison for c = 0 and κ = 0 in order for the power to equal 0.5 for any test as in Müller
(2005) and HLM5.

Comparing the size of tests for the case of κ = 0 (fig. 1(a)), under the absence of a linear
trend, it is clear that the size is smaller for tests that do not take into account the presence of a
trend. Additionally, the Qi dominates Si, as it was evident in the results of simulations performed

5Here and in the following sections results are obtained by simulations of the limiting distributions in Lemma 1,
approximating the Wiener process using i.i.d.N(0, 1) random variates and with integrals approximated by normalized
sums of 1,000 steps, with 50,000 replications.
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by Harris et al. (2007) for the case of the only constant in deterministic term. As a result, for
stationarity testing, the Qµ test will be most effective of the tests considered for κ = 0.

For κ = 0.5 (fig. 1(b)) the results are largely similar to the case of κ = 0 andQµ is still effective,
except in a very small interval c ∈ [0, 1], when Qµ is dominated by tests that take into account the
trend (though they have a higher power in the interval c ∈ [0, 1] and this interval can be considered
as negligible). Notably, that size of tests with only the constant slightly increases in comparison
with case of κ = 0. For κ = 1 (fig. 1(c)) the Sτ and Qτ are clearly superior to the Sµ and Qµ

(the latter have serious size distortions, the size is never lower than 0.4 for the considered interval
c ∈ [0, 20]), and Qτ is the efficient test. The size of tests with only the constant continues to
increase with increasing κ. For κ = 2 (fig. 1(d)) the size of Sµ and Qµ almost always equals to
one, which confirms the behavior Qµ and Sµ under a fixed nonzero trend (see Remark 2).

As each of the considered Qµ and Qτ tests is efficient (in terms of size) for some values of a
local trend, it is necessary to use a feasible strategy to discriminate between the two cases (pres-
ence/absence of a linear trend), if there is uncertainty over the magnitude of this local trend.

Following Harvey et al. (2009) we reject the null of stationarity if both tests reject the null
simultaneously. Specifically, this intersection of rejections decision rule can be written as:

IR = Reject H0 if {Qµ > mξcv
Q,µ
ξ and Qτ > mξcv

Q,τ
ξ }, (9)

where cvQ,µξ and cvQ,τξ are the asymptotic critical values forQµ andQτ for some specified value of c
and significance level ξ (for more details see Section 4), andmξ is some scaling constant ensuring
that asymptotic size equals ξ for a given value c (in case of absence of scaling the size and power
decreases, so we call the decision rule with scaling liberal).

It is possible to further improve this strategy by using information about the large value of
parameter κ, specifically, about the clear evidence of a trend. As noted by J. Breitung in rejoinder
of Harvey et al. (2009) there is no need to use the same scaling constantmξ in all cases. If there is
strong evidence for a trend, then the probability of rejection ofQµ test tends to unity. Consequently,
it is possible to improve the strategy IR by using pre-tests Dan-J , tλ, tm2

λ and tRQFβ ,6 proposed,
respectively, by Bunzel and Vogelsang (2005), Harvey et al. (2007), Perron and Yabu (2009) and
analyzed in HLT and Harvey et al. (2010) for various magnitudes of a local trend κ and initial
condition α (i.e. with strong evidence for the trend, the critical value of the Qτ can be used).
Specifically, consider the following modification of the decision rule (9):

IR(sβ) =

{
Reject H0 if {Qµ > mξcv

Q,µ
ξ and Qτ > mξcv

Q,τ
ξ }, if |sβ| ≤ cvβ

Reject H0 if {Qτ > cvQ,τξ }, if |sβ| > cvβ
, (10)

where sβ denotes some pre-test statistic for testing β = 0, and cvβ is the corresponding critical
value. The limiting distribution of these two tests follows directly from Lemma 1 and CMT, and
is, therefore, omitted. Under a fixed nonzero trend each of sβ statistics diverges to infinity, so that
asymptotically the Qτ test will be selected. On the other hand, in the absence of a trend the Qµ

with scaling critical value will actually be selected.
Figures 2(a)-(d) show asymptotic size of testsQµ,Qτ , IR, IR(|tλ|), IR(|tm2

λ |) and IR(|Dan-J |)
for values κ ∈ {0, 1, 2, 4} and c ∈ [0, 20]. We chose the scaling constantmξ in order for the asymp-
totic power of the test IR to equal 0.50 for κ = 0. For κ = 0 the size of IR tests is between Qµ

6The tλ and tRQFβ statistics are asymptotic equivalents, therefore we consider only the first in a study of the asymp-
totic behavior of the tests.
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and Qτ , as expected. The size of IR(sβ) tests is almost identical to IR. Size curves of IR(sβ)
nearly coincide with IR, as the hypothesis of β = 0 has rejected very rarely. For κ = 1, rejection
of the hypothesis of β = 0 is still quite rare, so that the size curves of IR(sβ) are close toIR, and
size curve of IR lies between ones of Qµ and Qτ . With increasing κ, the size of tests IR(sβ) ap-
proaches Qτ , the effective test in this case. The size curve IR(tλ) for κ = 4 coincides with Qτ , as
even for κ ≈ 2.6 the hypothesis of β = 0 will almost always be rejected by the tλ (see Harvey et al.
(2008, Fig. 5(a) and 6(a))). Comparing IR(tm2

λ ) and IR(Dan-J), the size curve of the latter is
closer to Qτ , as for large κ the Dan-J test rejects the hypothesis of β = 0 less frequently than tm2

λ

(see Harvey et al. (2008, Fig. 5(a) and 6(a))).

3.2 Asymptotic behavior under various initial conditions

We consider tests Qi and Si, i = µ, τ , in an approach similar to the previous section, by varying
parameters of the initial condition α from 0 to 6 7 and varying parameter c ∈ {5, 10, 15}. Addi-
tionally, we assume knowledge of the deterministic component type. Figures 3(a) and (c) show
asymptotic size of the tests Qµ, Sµ, IR and IR(sα). The last two tests will be discussed below.
Our results show that for small initial conditions the Qµ test dominates Sµ, while with increasing
α the asymptotic size of Qµ test goes to one (for moderate values of c). At the same time, the size
of Sµ increases with increasing α only for small values of c, but for c = 10 (Fig. 3(c)) it remains
constant for all α, even though it is dominated by Qµ for small initial conditions (α < 2.6). Thus,
for small α the Qµ test is efficient, while for large values of α it is strongly oversized. Therefore, if
information is available about the large initial condition, it becomes necessary to use the Sµ test.

Our results for the trend case are summarized in Figures 3(b) and (d) for c = 10 and c = 15,
respectively, and appear to be identical, although the size distortions for Qτ and Sτ are not as
strong for large α and small c, as in Qµ and Sµ (results available on request).

As in Harvey et al. (2009) the following strategy of intersection of rejection can be applied:

IR = Reject H0 if {Qi > mi
ξcv

Q,i
ξ and Si > mi

ξcv
S,i
ξ }, (11)

where cvQ,iξ and cvS,iξ , i = µ, τ are the asymptotic critical values of testsQi andSi for some specified
value c and significance level ξ, and mi

ξ is the some scaling constant in order for the asymptotic
size to be at ξ level for a given c.

In an approach that is similar to the previous section, this strategy can be modified by using
additional information about the large initial condition, in order to select only the test Si in this
case:

IR(sα) =

{
Reject H0 if {Qi > mi

ξcv
Q,i
ξ and Si > mi

ξcv
S,i
ξ }, if sα ≤ cvα

Reject H0 if {Si > cvS,iξ }, if sα > cvα
, (12)

where sα denotes some test statistic for testing α = 0, and cvα is the corresponding critical value.
As in the previous section, the limiting distribution of these two tests directly follows from Lemma
1 and CMT and omitted for brevity.

It can be used the following statistic (proposed by HLT) for sα:

sα = DF-QDi −
cvQD,iξ

cvOLS,iξ

DF-OLSi, (13)

7As these tests are symmetric around α there is no need to consider negative initial conditions.
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where i = µ, τ depends on the type of the deterministic term, DF-QDτ and DF-OLSτ are ADF
tests for GLS and OLS detrended data, respectively, and cvQD,τξ and cvOLS,τξ are corresponding
critical values. Large values of the upper tail of distribution for this test statistic indicate a large
initial condition of |α|. HLT obtained the critical values for c = 30; only in this case the test
statistic sα had the correct size. For smaller values of c it contained liberal size distortions that
increased with decreasing c.

Figures 3(a)-(d) also show the asymptotic size of IR and IR(sα) tests. As in the previous
section the critical values of Qi and Si (i = µ, τ ) and scaling factors m′ξ were calculated in such a
way, that the tests had their powers equal to 0.50. We use the critical values for sα at c = 10 for the
mean case and at c = 20 for the trend case (these values provide better test properties). We also
analyzed the behavior of the tests, if the critical values for sα were obtained at different c (results
are available upon request). Furthermore, we use an additional correction of critical values, so that
the IR(sα) strategy has power equal to 0.50. As expected, the size curve of IR lies between the
size curves of Si and Qi, although the size distortion is quite substantial for large α. However, the
modification IR(sα) has a size that is close enough to effective Si test for large α and significant
gain in size for small α in comparison to Si. Thus, IR(sα) effectively discriminates the cases of
small and large initial conditions.

3.3 Asymptotic behavior under uncertainty over both the trend and ini-
tial condition

Previous sections of this work discussed two testing strategies, the first of which is a stationarity
test with uncertainty over linear trend with the knowledge about asymptotically negligible initial
condition. The second testing strategy is stationarity test with the knowledge of the exact spec-
ifications of the deterministic component, but with uncertainty over the magnitude of the initial
condition. The magnitude of the initial condition or the value of a trend parameter are not known
in advance, however. In this case following the HLT method (see also Harvey et al. (2008)), we
can apply the strategy of intersection of rejections, which reject stationarity, if each of the four
tests, Qi and Si (i = µ, τ ), rejects the null hypothesis of stationarity. This liberal decision rule can
be written as:

IR4 = Reject H0 if {Qµ > m∗ξcv
Q,µ
ξ and Qτ > m∗ξcv

Q,τ
ξ

and Sµ > m∗ξcv
S,µ
ξ and Sτ > m∗ξcv

S,τ
ξ }, (14)

where m∗ξ is the scaling constant. It can also improve the test pre-identifying the possible large
initial condition or significant linear trend as in Sections 3.1 and 3.2. However, as shown in Harvey
et al. (2008), the tests Dan-J , tλ and tm2

λ are very sensitive to the magnitude of initial condition.
HLT used a modified test t′λ:

t′λ = (1− λ∗)t0 + λ∗t1, (15)

where in contrast to Harvey et al. (2007), t1 is constructed using autocorrelation-corrected t-ratio
for testing βT = 0 in the regression

yt − ρ̄Tyt−1 = µ̂(1− ρ̄T ) + β̂T (t− ρ̄T (t− 1)) + ût, t = 2, . . . , T, (16)

where ρ̄T = 1 − c̄/T , and corresponding long-run variance is calculated by using residuals ût.
HLT obtained the limiting distribution of the modified test statistic and showed that for c = c̄
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this statistic is asymptotically invariant to the initial condition at point c = c̄ and asymptotically
standard normal. HLT set sβ = |t′λ| with c̄ = 30 and used the standard normal critical value. Then
the test sβ will be oversized as c decreases towards zero, but at c = 30 will be correctly sized.

Thus, as in HLT, the modified liberal decision rule can be written as follows, where each IR(·, ·)
strategy reject the null hypothesis if all tests in the brackets reject it:

Definition 1 The modified intersection of rejections strategy IR∗4 is defined as follows:

1) If sβ ≤ cvβ and sα ≤ cvα, then use the liberal decision rule IR(Qµ, Qτ , Sµ, Sτ ), defined
in (14);

2) If sβ ≤ cvβ and sα > cvα, then use the liberal decision rule IR(Sµ, Sτ ), the correspond-
ing scaling constant is defined as m∗∗ξ ;

3) If sβ > cvβ and sα ≤ cvα, then use the liberal decision rule IR(Qτ , Sτ ), the correspond-
ing scaling constant is defined as mτ

ξ ;

4) If sβ > cvβ and sα > cvα, then use the decision rule reject H0, if Sτ > cvS,τξ .

The basic concepts of this strategy are as follows. Under 1) there is no reason to assume that
the values of the local trend and the initial condition are large, and there is no reason to argue
that they are necessarily small. Thus, the IR4 strategy should be applied. Under 2) there may
be some evidence in favor of a large initial condition, so that Qµ and Qτ tests will be ineffective
(then can have size approaching unity) and can be excluded from the intersection of rejections
IR4. However, since we can not be sure of the magnitude of the local trend, it is necessary to use
both tests Sµ and Sτ . Under 3) there is evidence of a large magnitude of a local trend. In this
case,Qµ and Sµ are ineffective and should be excluded from the IR4 strategy. However, we should
consider both Qτ and Sτ tests, as there is no reason to believe that the initial condition is large.
Finally, under 4) there is evidence of both a large local trend and large initial condition so that only
Sτ will be effective test in this case. Thus, the null hypothesis will be rejected if only this test will
be reject it.

Figures 4-6 respectively demonstrate for κ = 0, 0.5, 1, the asymptotic size of tests Sτ , IR4 and
IR∗4 for c ∈ {0, 1, . . . , 20} by fixing power at 0.50. Results for larger κ are discussed below. All
figures (a)-(i) show the results for α = {−4,−2,−1,−0.5, 0, 0.5, 1, 2, 4}, respectively. Only Sτ is
considered in the figures among the four original stationarity tests, as its size is never below a cer-
tain level across considered α and κ. Thus, this test can be considered “robust” under both forms
of uncertainty (trend and initial condition). Notably, it is necessary to correct the testing strategy
IR∗4, so that it controls size asymptotically as in HLT. Therefore, we replace cvQ,µξ , cvQ,τξ , cvS,µξ and
cvS,τξ by τξcv

Q,µ
ξ , τξcv

Q,τ
ξ , τξcv

S,µ
ξ and τξcv

S,τ
ξ , respectively, where τξ is the scaling constant, such

that the power has never been lower than 0.50.
When κ = 0 the IR∗4 test outperforms the Sτ test. Only in case of α = 4 for small c the size of

IR∗4 is slightly higher. In comparison with the IR4 test, its size is almost always smaller than the
Sτ and IR∗4 tests, although in case of a large |α|, this test has serious size distortions for small c.
When κ = 0.5 for negative α the size of IR∗4 is slightly higher than Sτ (except for c > 5 in case of
α = −4), but increasing α, even at α = 0.5 causes their size curves to intersect, and for α = 2 the
size of IR∗4 is lower than Sτ . For |α| < 1 the size of IR4 behaves almost as well as Sτ , but for large
|α| its size curves become strongly nonmonotonic.
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In our discussion of results of larger κ, it should be noted that when κ = 0, IR4 outperforms two
of the other tests and Sτ shows serious size distortion. When κ = 1, the Sτ becomes dominant,
while IR4 shows considerable size distortion. In both cases the size curve of IR∗4 lies between
the ones of Sτ and IR4. According to Definition 1, as κ becomes larger, Sτ will continue to
dominate, and the size curve of IR∗4 will lie between the ons of Sτ and IR4, but will get close
to Sτ (however, due to scaling, it will not coincide with Sτ even for very large κ). Therefore,
under uncertainty about the trend, IR∗4 testing strategy should be applied, whose size distortion is
acceptable regardless of whether a large time trend exists.

Thus, based on the asymptotic results, we strongly recommend the use of the modified decision
rule IR∗4, if there is uncertainty over both the trend and the initial condition.

4 Critical values

In this section we discuss obtaining critical values for their practical application8, as previously we
compared the tests by fixing the power at 0.50.

The critical values for tests Qµ(c̄) and Sµ(c̄) are given in Table 1. We obtain them at c = 10 for
tests Qµ(c̄) and Sµ(c̄), as in Müller and Elliott (2003) and Elliott and Müller (2006), and for tests
Qτ (c̄) and Sτ (c̄) at c = 15. We note (see HLM), that in this case c = c̄, and tests Si(c̄), (i = µ, τ )
have standard KPSS limiting distributions, so the critical values are the same as for conventional
KPSS tests. However, the finite sample critical values slowly converge to the asymptotic, so we
provide additional critical values of all tests for T = 150, 300, 600. Asymptotic scaling constants,
however, are appropriate for finite samples. Also, Qi(c̄) is not invariant to the initial condition α,
when c > 0, so the critical values obtained for α = 0.

Critical values for the initial condition test sα were obtained at c = 20 and are listed in Table 2.
It is necessary to obtain scaling constants for all intersection of rejections testing strategy,

which were considered in Sections 3. However, there is some difficulty with obtaining the scaling
constants, as the critical values for the tests with trend are constructed with c = 15, while critical
values for the tests only with constant, are constructed with c = 10. Therefore, if the intersection
of rejections testing strategy includes tests with different types of deterministic components, we
obtain the scaling constants with c = 12.5 (i.e. at c = 12.5 tests has correct size). Otherwise,
scaling is performed using the specific c for each type of deterministic component. All scaling
constants are given in Table 3 (the simulation code is available upon request).

We also conduct finite sample simulations for proposed strategies (by fixing the power at 0.50
to allow comparison), by using QS kernel and automatic bandwidth selection of Newey and West
(1994) for long-run variance estimator of Si(c̄) statistics and autoregressive long-run variance
estimator of Qi(c̄) statistics. Various DGP were examined (i.i.d., AR(1) and MA(1) processes
for εt). Results show that asymptotic analysis provides a good approximation for the behavior of
tests in finite samples (results available in the online Appendix to this paper). Notably, only Si(c̄)
and Qi(c̄) requires finite sample critical values while the asymptotic scaling constants are similar
to the asymptotic.

8In this section, we obtain the results using the normalized sum of 5,000 steps and 100,000 replications.
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5 Conclusion

In this paper we considered the problem of stationarity testing with uncertainty over the trend
and/or initial condition. We proposed the intersection of rejections testing strategy of several tests
(similar to using a union of rejection testing strategy proposed by HLT), if there is uncertainty
over the trend and/or initial condition. Simulation evidence revealed that a testing strategy based
on the rejection of all tests each of which is effective for small/large initial conditions and/or for
small/large parameter of the local trend suggests size performance in the presence of uncertainty
over both the trend and the initial condition. Additionally, we showed that pre-testing of the trend
parameter and of the initial condition could improve the procedure if any of these parameters will be
significantly nonzero. As stationarity testing is necessary for confirmatory analysis, we conclude
that our procedure is useful in empirical applications in conjunction with the HLT test.

Appendix

Proof of Lemma 1: Due to the invariance, we set µ = 0 without loss of generality, thus yt = βt+ut.
We consider a model without the trend, when it is actually present. Using GLS-detrending we

obtain that

rt = yt − ρ̄yt−1 − µ̃,

µ̃ =
1

T − 1

T∑
t=2

(yt − ρ̄yt−1).

Let zt = ut − u1. Then

rt = ut − ρ̄ut−1 + βt− ρ̄β(t− 1)− 1

T − 1

T∑
t=2

(ut − ρ̄ut−1)− β

T − 1

T∑
t=2

(t− ρ̄t+ ρ̄)

= zt + u1 − ρ̄zt−1 − ρ̄u1 −
1

T − 1

T∑
t=2

(zt + u1 − ρ̄zt−1 − ρ̄u1)

+ βt− ρ̄β(t− 1)− β

T − 1

T∑
t=2

(t− ρ̄t+ ρ̄)

=

[
zt − ρ̄zt−1 −

1

T − 1

T∑
t=2

(zt − ρ̄zt−1)

]
+

[
βt− ρ̄βt− β

T − 1

T∑
t=2

(t− ρ̄t)

]

The second term can be written as β
(
t− T+2

2

)
− ρ̄β

(
t− T+2

2

)
= T−1c̄β

(
t− T+2

2

)
.

Then

T−1/2

[rT ]∑
i=2

rt =

T−1/2

[rT ]∑
i=2

(
zt − ρ̄zt−1 −

1

T − 1

T∑
t=2

(zt − ρ̄zt−1)

)
+

T−1/2

[rT ]∑
i=2

T−1c̄β

(
i− T + 2

2

)
11



The first term of this expression has a limiting distribution obtained in HLM and corresponds
to the case of κ = 0 (more precisely, converges to ωεHc,c̄,α,0(r)). Consider the second term, re-
sponsible for the behavior of test statistics under local trend:

T−1/2

[rT ]∑
i=2

T−1c̄β

(
i− T + 2

2

)
= c̄ωεκT

−2 ([rT ]− 1)([rT ] + 2)

2
− c̄ωεκT−2 ([rT ]− 1)(T + 1)

2

This expression converges to c̄ωεκ
(
r2

2
− r

2

)
, which proves the lemma using CMT and simple

integral transformations, because the long-run variance estimators (kernel-based in our case) ωε
are still consistent under the local trend misspecification.

�
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Table 1. Asymptotic and finite sample critical values for Qi and Si, i = µ, τ at the ξ significance
level

T ξ = 0.10 ξ = 0.05 ξ = 0.01

Qµ ∞ 6.93 8.04 10.55
600 6.90 8.07 10.65
300 6.98 8.18 10.97
150 7.09 8.32 11.32

Qτ ∞ 9.04 10.28 12.90
600 9.02 10.29 13.05
300 9.03 10.26 13.13
150 9.15 10.42 13.32

Sµ ∞ 0.348 0.461 0.745
600 0.341 0.451 0.711
300 0.341 0.445 0.699
150 0.342 0.442 0.658

Sτ ∞ 0.120 0.148 0.220
600 0.118 0.145 0.209
300 0.117 0.143 0.203
150 0.118 0.141 0.196

Table 2. Asymptotic critical values for sα at the ξ significance level

ξ = 0.10 ξ = 0.05 ξ = 0.01

-0.168 0.069 0.563

Table 3. Asymptotic scaling constants for intersection of rejections testing strategies at the ξ
significance level

ξ = 0.10 ξ = 0.05 ξ = 0.01

IR(Qµ, Qτ )

mξ 0.801 0.793 0.782

IR(Qµ, Sµ)

mµ
ξ 0.845 0.851 0.876

IR(Qτ , Sτ )

mτ
ξ 0.897 0.894 0.900

IR(Qµ, Qτ , Sµ, Sτ )

m∗ξ 0.571 0.551 0.521

IR(Sµ, Sτ )

m∗∗ξ 0.576 0.554 0.522

τξ 0.852 0.840 0.844
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Figure 1. Asymptotic size and power for different values of κ, βT = κωεT
−1/2
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Figure 2. Asymptotic size and power for different values of κ, βT = κωεT
−1/2

Qµ : , Qτ : , IR : , IR(tλ) : , IR(tm2
λ ) : N , IR(Dan-J) : H
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Figure 4. Asymptotic size and power for stationarity tests, κ = 0
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Figure 5. Asymptotic size and power for stationarity tests, κ = 0.5
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Figure 6. Asymptotic size and power for stationarity tests, κ = 1
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