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Abstract

In this paper we extend the stationarity test proposed by Kurozumi and Tanaka (2010) for
reducing size distortion with one structural break. We find the bias up to the order of 1/T for
four types of models containing structural breaks. The simulations on finite samples show a
reducing of size distortions in comparison with other tests, thus receiving higher power.
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1 Introduction

Unit root testing is a necessary element of data analysis. The standard and most widespread ap-
proach beginning from the work of Dicky and Fuller (Dickey and Fuller, 1979) is the hypothesis
testing of unit root in a time series. But beginning from Kwiatkowski et al. (1992) (hereafter
KPSS) the opposite direction of researches has had development with null hypothesis of station-
arity about deterministic trend as a reversal complement of the unit root tests. The general and one
of the basic problems in all of these tests is an assumption about the type of deterministic function.
In works beginning by Perron (1989) it has been shown that usual unit root tests are inconsistent
if the alternative hypothesis is that of stationary with structural break in the deterministic trend.
A similar problem arises in stationarity tests, i.e. if a structural break occurs in the data there is
serious size distortion in the usual KPSS test. Accordingly for solving this problem there were
researches allowing breaks in stationarity tests.

Lee and Strazicich (2001) use an analogue of the KPSS test, considering two models: one
model with a change in level for a non-trending series and another model with a change in both
level and slope. In case of unknown break date the authors proposed the estimator of break date
obtained at the value that minimizes the stationarity statistic. However it has been shown that the
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test has had low power because the minimizing of test statistics leads to the least favorable out-
come against the alternative. Kurozumi (2002) considered the local asymptotic of the KPSS test
allowing four types of structural changes. He obtained the limiting distributions of test statistics
for all models, asymptotic local power function (using the approach stated in Tanaka (1996, chap-
ter 9)) and investigated the power of tests depending on the location of the break. He also proposed
another test in which limiting distribution didn’t depend on the timing of the break. In case of un-
known break date the author used an estimator of the break date obtained through minimizing the
sum of squared residuals.

In Busetti and Harvey (2001) a similar problem of stationarity testing has been considered un-
der a fixed alternative. The authors investigated KPSS tests for four types of models and received
a corresponding limiting distribution and critical values. Note that Harvey and Mills (2003) found
an error in final distribution for a model with a change in level though the proof was correct and
critical values simulated using correct distribution. Harvey and Mills (2003) proposed modifica-
tion of the standard KPSS statistic which limiting distribution didn’t depend on the timing of the
break and its generalization on a case of multiple structural changes.

Busetti and Harvey (2003) investigated different ways of estimating the break date if it is un-
known. The test of Busetti and Harvey (2001) is based on the assumption of small breaks (the
magnitude of the shift shrinks to zero as the sample size grows), and the break date is calculated
using minimization of test statistics. Then there is a natural question how large the shift should
be to satisfy this assumption because in the presence of large changes the rejection of the null
hypothesis occurs too frequently. Another procedure proposed by Busetti and Harvey (2003) has
good size properties but loses power under small changes. It consists of making a preliminary
estimation of the break date by minimizing the sum of squared residuals, and then using the stan-
dard test statistics with the obtained estimate as the true date of break. Simulations have shown
that minimization of test statistics too often rejects the null hypothesis of stationarity even for such
small sizes of shift as one standard deviation of errors. Though for large shifts the empirical size is
never above 0.17 the size of the test based on using a superconsistent estimate of break fraction
as true is close to nominal at any size of break1. However the power of the test is too small for
a small shift, but increases with its growth in magnitude, i.e. in a situation where it is easier to
identify change. If the break actually doesn’t occur, the infimum-test is more powerful than the
test using a superconsistent estimate of break fraction obtained through minimization of the sum
of squares residuals. Thus, if there is an uncertainty over the presence of a break, the infimum-test
is preferable. On the other hand, if there is a confidence that a break exists, but its location isn’t
clear, it is preferable to use a two-step procedure in which the test statistic is calculated with the
break date estimated through minimization of the sum of squares residuals.

Carrion-i-Silvestre and Sansó (2005) consider a possibility of two structural breaks in the
KPSS test. They use an approach proposed by Sul et al. (2005) (hereafter SPC) for long run
variance estimator. For each of seven models examined in the article the authors obtained the
limiting distributions. A search of unknown break dates was made through minimization of the
sum of squares residuals.

Another problem of KPSS type test has been considered, among others, in Carrion-i-Silvestre
and Sansó (2006). They showed that on finite samples an SPC test with AR(1) prewhitening
was more preferable than others because it controls size. However the SPC test with AR(1)
prewhitening has serious size distortion when the data generating process (DGP) is AR(2) (or

1This may not happen if the local asymptotic is considered.
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higher order). Kurozumi and Tanaka (2010) (hereafter KT) extended the SPC approach (however
with the absence of breaks) where for estimation of a long run variance they used autoregres-
sive approximation using a boundary rule introduced by SPC for warranting of the consistency
of long run variance. The authors also investigate the problem of downward bias in numerator
of KPSS test statistics. For size correction they derived the finite sample bias and proposed the
bias-corrected version of the KPSS test. Simulations showed that the empirical size of the modi-
fied test is well controlled in the case of AR(2) errors, and the modified test also has higher power
in comparison with SPC.

In this paper we propose the extension of the KT test on a case of a single structural break.
Using modification of the boundary rule with autoregressive approximation as in KT we derive a
finite sample bias of KPSS test statistics in a case of the presence of one break in DGP. If the
break date is unknown it is possible to use its estimate obtained through minimization of the sum
of squares residuals using the new approach of Harvey and Leybourne (2012). Simulations show
the superiority of the modified test even in case of MA error.

The paper is organised as follows. In section 2 we discuss the model, test statistics, boundary
rule of SPC with modification of long run variance proposed by KT. Also we derive parameter of
bias for different types of models containing break. In section 3 we describe the possible estimators
for unknown break date. In section 4 we detail the finite sample properties of the modified test. The
results obtained are formulated in the Conclusion.

2 The Model

We consider the time series process {y} generated according to the following model

yt = d′tβ + ut, t = 1, . . . , T, (1)

where dt is some deterministic component, and process ut satisfy following standard assumption
(see also Phillips and Solo (1992)).

Assumption 1 Process ut may be either I(0) or I(1):

• if ut ∼ I(0), then it is linear process such that

ut = γ(L)et =
∞∑
i=0

γiet−i

with γ(z) 6= 0 for all |z| ≤ 1 и
∑∞

i=0 i|γi| < ∞, where et – martingale difference se-
quence with conditional variance σ2

e and supt E(e4
t ) < ∞. Short run and long run

variance are defined as σ2
u = E(u2

t ) and ω2
u = limT→∞ T

−1E
(∑T

t=1 ut

)2

= σ2
eγ(1)2, re-

spectively;

• if ut ∼ I(1), then it may be represented as ut =
∑t

j=1 et, where et ∼ I(0).

Also as in Perron (1989) (see also Perron (2006)) we consider four type of model: Model 0
(a change in level), respectively for a non-trending and for a trending series, Model I (a change
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in slope) and Model II (a change in both level and slope, mixed effect). Therefore deterministic
component dt can be written as:

d′t =


(1, DUt), for Model 0

(1, t, DUt), for Model 0t

(1, t, DTt), for Model I

(1, t, DUt, DTt), for Model II

,

where DUt = I(t > T1 + 1), DTt = (t − T1)I(t > T1 + 1), I(·) is the indicator function, T1 is the
break date. We define also break fraction as λ1 = T1/T .

We are testing null of stationarity (ut ∼ I(0)) against the alternative of a unit root (ut ∼ I(1)).
It is usually used following KPSS test statistics for testing stationarity against unit root:

KPSS(λ1) =
T−2

∑T
t=1

(∑t
s=1 ûs

)2

ω̂2
u

(2)

where ût = yt − d′tβ̂ are OLS-residuals of yt on dt, where dt = [1, DUt]
′, β = (µ0, µ1)′ for Model

0, dt = [1, t, DUt]
′, β = (µ0, β0, µ1)′ for Model 0t, dt = [1, t, DTt]

′, β = (µ0, β0, β1)′ for Model
I, dt = [1, t, DUt, DTt]

′, β = (µ0, β0, µ1, β1)′ for Model II, and long run variance estimator ω̂2
u is

constructed according to the nonparametric approach using Bartlett or QS kernel.
Test statistics (2) have following limiting distribution derived by Busetti and Harvey (2001)

(with correction of Harvey and Mills (2003)):

Lemma 1 Under the null

KPSS(λ1)⇒
∫ 1

0

(W ∗(r, λ1))2 dr,

where for Model 0:

W ∗(r, λ1) =

{
W (r)− r

λ1
W (λ1), for r ≤ λ1

(W (r)−W (λ1))− r−λ1
1−λ1 (W (1)−W (λ1)) , for r > λ1

;

for Model 0t:

W ∗(r, λ1) =



W (r)− r
λ1
W (λ1)− 6r(r−λ1)

1−3λ1+3λ21

×
[∫ 1

0
rdW (r)− λ1

2
W (λ1)− 1+λ1

2
(W (1)−W (λ1))

]
, for r ≤ λ1

(W (r)−W (λ1))− r−λ1
1−λ1 (W (1)−W (λ1))− 6(r−1)(r−λ1)

1−3λ1+3λ21

×
[∫ 1

0
rdW (r)− λ1

2
W (λ1)− 1+λ1

2
(W (1)−W (λ1))

]
, for r > λ1

;
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for Model I:

W ∗(r, λ1) =



W (r)− rW (1)− 3
λ31(1−λ1)3

×
[(
a r

2

2
− aλ1r + r

2
(aλ2

1 − b(1− λ1)2)
)
J1

+
(
b r

2

2
− bλ1r + r

2
(bλ2

1 − c(1− λ1)2)
)
J2

]
, for r ≤ λ1

W (r)− rW (1)− 3
λ31(1−λ1)3

×
[(
−aλ

2
1

2
+ b

r2−λ21
2
− bλ1(r − λ1) + r

2
(aλ2

1 − b(1− λ1)2)
)
J1

+
(
−bλ

2
1

2
+ c

r2−λ21
2
− cλ1(r − λ1) + r

2
(bλ2

1 − c(1− λ1)2)
)
J2

]
, for r > λ1

;

for Model II:

W ∗(r, λ1) =



W (r)− r
λ1
W (λ1)− 6r(r−λ1)

λ31

×
[∫ λ1

0
rdW (r)− λ1

2
W (λ1)

]
, for r ≤ λ1

(W (r)−W (λ1))− r−λ1
1−λ1 (W (1)−W (λ1))− 6(r−1)(r−λ1)

(1−λ1)3

×
[∫ 1

λ1
rdW (r)− 1+λ1

2
(W (1)−W (λ1))

]
, for r > λ1

;

Here a = (1−λ1)3(1+λ1), b = −3λ2
1(1−λ1)2, c = λ3

1(4−3λ1), J1 =
∫ λ1

0
rdW (r)−λ1W (λ1)+

λ21
2
W (1) and J1 =

∫ 1

λ1
rdW (r)− λ1(W (1)−W (λ1))− (1−λ1)2

2
W (1).

The KPSS test can control the size of the test asymptotically but in finite samples it has serious
size distortion. For their reducing SPC proposed AR(1) prewhitening method with a boundary
rule. I.e. we first estimate AR(p) model for residuals of regression (1), ût:

ût = ϕ1ût−1 + · · ·+ ϕpût−p + et.

Then the long run variance estimator is constructed as

ω̂2
u =

ω̂2
e

(1− ϕ̃)2
, (3)

where φ̃ = min
{∑p

j=1 φ̂j, 1− 1/
√
T
}

and ω̂e is the long run variance estimator of residuals êt2.

KT proposed the modification of SPC for the case of autoregerssive long run variance estimator
ω2
u, i.e.:

ω̂2
u,AR =

σ̂2
e

(1− φ̃)2
, (4)

where σ̂e = T−1
∑T

t=1 ê
2
t and φ̃ = min

{∑p
j=1 φ̂j, 1− c/

√
T
}

with c is some finite constant. How-

ever while autoregressive estimator of long run variance is applied well enough there is a problem
of downward bias of test statistics (2) in finite samples. KT showed for the cases of constant and

2ForAR(1) error Carrion-i-Silvestre and Sansó (2006) showed that the size of SPC test withAR(1) prewhitening
is close to the nominal and more preferably other tests when true DGP is AR(1) process while it has liberal size
distortion if true DGP is AR(2) process.
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trend that their modification of long run variance estimator still leads too rare null rejection due
to this downwards bias. This leads to essential power losses under the alternative hypothesis.
For prevention bias in the numerator of KPSS test statistics in finite samples KT proposed its
bias-corrected version:

KPSS =
T−2

∑T
t=1

(∑t
s=1 ûs

)2 − b̂T
ω̂2
u,AR

. (5)

Here the term bT is responsible for bias. To calculate its value authors suggest to use Beveridge-
Nelson decomposition. Let ut = ψ(L)et, then process ut can be written as

ut = ψ(1)et + υt−1 − υt,

where υt =
∑∞

j=0 ψ̃jet−j , ψ̃j =
∑∞

i=j+1 ψi. The residuals ût is defined as

ût = ut − d′t

(
T∑
t=1

dtd
′
t

)−1 T∑
t=1

dtut

= ψ(1)et + υt−1 − υt − d′t

(
T∑
t=1

dtd
′
t

)−1 T∑
t=1

dt(ψ(1)et + υt−1 − υt)

= ψ(1)êt − ∆̂υt,

where êt and ∆̂υt are the residuals of regression of et and ∆υt on dt, respectively. Then KT decom-
posed the numerator of (2) into three terms:

1

T 2

T∑
t=1

(
t∑

s=1

ûs

)2

=
ψ2(1)

T 2

T∑
t=1

(
t∑

s=1

ês

)2

+
1

T 2

T∑
t=1

(
t∑

s=1

∆̂υs

)2

− 2ψ(1)

T 2

T∑
t=1

(
t∑

s=1

ês

)(
t∑

s=1

∆̂υs

)

=
ψ2(1)

T 2

T∑
t=1

(
t∑

s=1

ês

)2

+R1 −R2.

The second and third terms are op(1) while the first term have nondegenerate limiting distri-
bution. Thus bias of numerator depends on R1 and R2. KT determines this bias as expectation of
R1 −R2 up to O(T−1). This bias is defined as bT :

E[R1 −R2] = bT + o(T−1). (6)

Proposition 1 Let γ0 = E[υ2
t ], lag polynomial ϕ(L) = c(L)(1−ρL) and ϕ′(1) = dϕ(z)/dz|z=1.

Then bias bT in the numerator of KPSS test statistic (5) is expressed as

bT =
b0

T

(
γ0 + σ2

e

ϕ′(1)

ϕ3(1)

)
(7)
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where b0 = 5/3 for Model 0, b0 =
285λ41−576λ31+498λ21−213λ1+38

30(1−3λ1+3λ21)2
for Model 0t, b0 = 7/6 for Model I

и b0 = 19/15 for Model II3.

Remark Note that for Model 0, I and II the bias doesn’t depend on break fraction λ. But this
is not for Model 0t.

Parameter γ0 can be constructed recursively solving Yule-Walker equations (see for details in
Kurozumi and Tanaka (2010, section 3.2)).

3 The case with unknown break date

The test considered in previous sections is based on assumptions that the timing of the structural
breaks is known a priori. However in many cases it cannot be known to the researcher. Then it is
possible to replace a known break date with its consistent estimate. Then the limiting distribution
of the test statistics remains the same. The consistent estimator of the break fraction λ1 = T1/T
can be obtained through minimizing the sum of squared residuals in the model over all possible
break dates. It is possible to show that this estimator is superconsistent under both the I(0) and
I(1) (see, e.g., Perron and Zhu (2005)).

The alternative procedure of searching an unknown break date proposed by Carrion-i Silvestre
et al. (2009), using preliminary (quasi) GLS-detrending of yt. I.e., let us estimate the following
regression:

yt = Xt (λ1)φ+ ut, (8)

where Xt (λ1) includes all regressors, and φ is a corresponding parameters. Then GLS-estimate
φ̂ of vector φ is the OLS-estimate of coefficient vector in equation

yρ̄t = X ρ̄
t (λ1)φ+ uρ̄t , (9)

where
yρ̄t = [y1, (1− ρ̄L) y2, . . . , (1− ρ̄L) yT ]′,

X ρ̄
t (λ1) = [x1, (1− ρ̄L)x2, . . . , (1− ρ̄L)xT ]′.

Carrion-i Silvestre et al. (2009) suggest to choose ρ̄ = 1 + c̄/T depending on timing of break,
because we do not know a priory whether the series ut is I(0) or I(1). Then the estimator of break
date is:

λ̂ρ̄1 = arg min
λ1∈Λ(e)

S(ρ̄, λ1), (10)

where S(ρ̄, λ1) is the sum of squared residuals in regression (9). The obtained estimate of the
break fraction will be superconsistent under both the I(0) and I(1) cases.

Harvey and Leybourne (2012) proposed the modification of this break date estimator using
additional information if the series is I(1). In this case estimate of break fraction obtaining for
GLS detrended series will be also consistent but the estimate obtaining for the first differenced
series will be efficient. Authors propose to use a hybrid estimator:

3KT showed that in case of constant only b0 = 5/3 and in case of constant and trend b0 = 19/15.
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λ̂Dm
1 = arg min

λ1∈Λ(e),ρ̄∈Dm

S(ρ̄, λ1), (11)

where Dm = {ρ′1, ρ′2, . . . , ρ′m−1, 1} is the m element set, where |ρ′i| < 1 for all i and, without loss of
generality,−1 < ρ′1 < ρ′2 < · · · < ρ′m−1 < 1.

Asymptotic results show that it is necessary to set ρ′m−1 close enough to unit that the esti-
mate (11) had demanded asymptotic properties (if the true value of ρ > ρ′m−1, then break fraction
estimator will be inefficient). As set Dm authors suggest to use Dm = {0, 0.2, 0.4, 0.6, 0.8, 0.9,
0.95, 0.975, 1}. The reason is that a negative serial correlation usually is not observed in practice,
and also the serial correlation often can be very strongly positive, therefore inclusion of value 0.975
allows a small enough interval 0.975 < ρ < 1 for adequate asymptotic choice.

We will use this estimator further in the next section. Note that as an estimate of break fraction
is consistent it is possible to use the same critical values (obtained by Busetti and Harvey (2001)
or Kurozumi (2002)) as in known break date.

4 Finite sample properties

In this section we investigate the finite sample behavior of the tests. Consider following DGP:

yt = d′tβ + ut, ut = αut−1 + εt − θεt−1, (12)

i.e. we allow MA component in DGP. Also εt ∼ i.i.d.N(0, 1). We set the values of parameter α
from 0.5 to 1, values of parameter θ in MA component {−0.8,−0.4, 0.0, 0.4, 0.8}, break fraction
λ1 = 0.5. The parameters of deterministic component µ0 = 0 without loss of generality, µ1 = −4,
β0 = 0.3, β1 = −0.1. The significance level is 0.05, the number of replications is 5,000. The initial
value u0 is set to 0 for simplicity.

We consider the behavior of four tests. The first is a bias-corrected KPSS test with correction
factor, obtained under structural change in Section 2 (it is marked in graphs as BC). The second
is SPC test with AR(1) prewhitening (it is marked as SPC). Also for comparison we consider a
KPSS test without correcting factor b̂T (it is marked as NC), and a KPSS test with break with
proposed by Kurozumi (2002) bandwidth:

lAk = min

{
1.447

(
α̂2T

(1 + α̂)2(1− α̂)2

)1/3

, 1.447

(
4k2T

(1 + k)2(1− k)2

)1/3
}
.

with k = 0.8 (it is marked as K). In all cases the lag length is selected using BIC.
The Figure 1 shows the size and power of the considered tests for Model II (the results for other

models are similar and omitted for brevity) for known break date (λ1 = 0.5) and boundary value
equal to 1− c/

√
T = 0.8. This value suppose for α is greater than 0.8 the null hypothesis will tend

to be rejected more often if θ = 0. If θ 6= 0 then the measure of the strength of persistence should
be based on the autoregressive representation of the series. In our ARMA(1, 1) rewrite DGP for
ut as

(1− αL)(1− θL)−1ut = εt

Then the measure of the strength of persistence ϕ1 + · · ·+ϕp should be (α−θ)/(1−θ). We expect
that the null hypothesis will be rejected more often than the nominal size when this measure is
greater than 0.8. That is in Figure 1 the bias-corrected KPSS test should control the size for
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α < 0.64 and over-reject the null otherwise for θ = −0.8. For θ = −0.4, θ = 0.4 and θ = 0.8
the test should control the size for α < 0.72, α < 0.88 and α < 0.96, respectively. For θ = −0.8,
θ = −0.4 and θ = 0 this is confirmed by results in Figure 1 while for θ = 0.4 and θ = 0.8 the test
begins to reject the null more often for smaller α, because the boundary value is large.

In cases θ = −0.8 and θ = −0.4 the obtained bias-corrected test has a size closer to nominal
than in other tests. For θ = −0.8 any of tests has no power above than of bias-corrected test.
On the other hand for θ = −0.4 case there are some size distortion for α > 0.7. This leads
to higher power in comparison with a test with no correction. In simple AR(1) case the results
are similar to, i.e. Carrion-i-Silvestre and Sansó (2005) and KT. Here the bias-corrected test
obviously surpasses the others in size and power. For negative MA component the test proposed
by Kurozumi (2002) has higher power simultaneously with higher size (for all values of θ this test
is characterized by oversizing). Though the bias-corrected test has lower power it controls the
size well.

The results for other values of boundary value are similar and omitted. It can be noticed that
for higher values the superiority of the bias-corrected test is more appreciable though it has lower
power (for other tests the size distortion increases), and for lower values higher power is observed
which is compensated by size distortions after boundary value.

The figure 2 shows size and power for unknown break date estimated by Harvey and Leybourne
(2012) procedure. Apparently results practically have not changed and are qualitatively similar.

5 Conclusion

In this paper we considered the generalization of the test proposed by Kurozumi and Tanaka (2010)
on the case of a single structural break. Using boundary rule in SPC with AR(1) prewhitening
we found the finite sample bias of numerator in case of structural change occurring in DGP. The
results are similar to the case of absence of break. In simulation analysis the case of unknown
break date has been considered using the approach proposed by Harvey and Leybourne (2012).
The finite sample results show the superiority of the obtained modification in the presence of break
because the test controls the size better. Therefore use of the bias-corrected KPSS test should be
useful in empirical applications.

A Appendix

Proof of Theorem 14. Consider the most general case with d′t = (1, t, DUt, DTt). As in KT, we
decompose R1 into three term:

R1 = R11 −R12 +R13,

where
4Some matrix calculations (multiplication, inversion) are carried out using Wolfram Mathematica 8.
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R11 =
1

T 2

T∑
t=1

(
t∑

s=1

∆υs

)2

R12 = = − 2

T 2

(
T∑
t=1

t∑
s=1

∆υs

t∑
s=1

d′s

)(
T∑
t=1

dtd
′
t

)−1 T∑
t=1

dt∆υt

R13 =
1

T 2

T∑
t=1

∆υtd
′
t

(
T∑
t=1

dtd
′
t

)−1( T∑
t=1

t∑
s=1

ds

t∑
s=1

d′s

)(
T∑
t=1

dtd
′
t

)−1 T∑
t=1

dt∆υt.

Notice that
∑t

s=1 ∆υs = vt − v0, then (see KT):

E[R11] =
2

T
γ0 +O(T−2). (13)

The second term is expressed as:

E[R12] =
2

T 2
tr


(

T∑
t=1

dtd
′
t

)−1

E

[(
T∑
t=1

dt∆υt

)(
T∑
t=1

t∑
s=1

∆υs

t∑
s=1

d′s

)] (14)

For proof we use the following results:

T∑
t=1

dt∆υt =


∑T

t=1 ∆υt∑T
t=1 t∆υt∑T

t=1DUt∆υt∑T
t=1DTt∆υt

 =


υT − υ0

(T + 1)υT − υ0 −
∑T

t=1 υt
υT − υT1

(T + 1− T1)υT − υT1 −
∑T

t=T1+1 υt

 . (15)

(
T∑
t=1

t∑
s=1

∆υs

t∑
s=1

d′s

)
=


∑T

t=1 t(υt − υ0)∑T
t=1 (υt − υ0)

∑t
s=1 s∑T

t=1 (υt − υ0)
∑t

s=1DUs∑T
t=1 (υt − υ0)

∑t
s=1 DTs


′

(16)

T∑
t=1

t∑
s=1

DUs =
T 2(1− λ1)2

2
+ o(T 2) (17)

T∑
t=1

t∑
s=1

DTs =
T 3(1− λ1)3

3
+ o(T 3) (18)

T∑
t=1

tDUt =
(T + T1 + 1)(T − T1)

2
(19)

T∑
t=1

tDTt =
(T − T1)(T − T1 + 1)(2T + T1 + 1)

6
(20)

T∑
t=1

DTtDTt =
(T − T1)(T − T1 + 1)(2T − 2T1 + 1)

6
(21)
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Using (19)-(21) it can be shown that

T∑
t=1

dtd
′
t =
T T (T+1)

2
T − T1

(T−T1)(T−T1+1)
2

T (T+1)
2

T (T+1)(2T+1)
6

(T−T1)(T+T1+1)
2

(T−T1)(T−T1+1)(2T+T1+1)
6

T − T1
(T−T1)(T+T1+1)

2
T − T1

(T−T1)(T−T1+1)
2

(T−T1)(T−T1+1)
2

(T−T1)(T−T1+1)(2T+T1+1)
6

(T−T1)(T−T1+1)
2

(2T−2T1+1)(T−T1)(T−T1+1)
6

 . (22)

Then

(
T∑
t=1

dtd
′
t

)−1

=
2(2T1+1)
(T1−1)T1

− 6
(T1−1)T1

2
T1

6
(T1−1)T1

− 6
(T1−1)T1

12
(T1−1)T1(T1+1) − 6

T1(T1+1) − 12
(T1−1)T1(T1+1)

2
T1

− 6
T1(T1+1)

2T(2TT1−T−2T 2
1 +2T1+1)

T1(T1+1)(T−T1−1)(T−T1)
6T (T−2T1−1)

T1(T1+1)(T−T1−1)(T−T1)

6
(T1−1)T1

− 12
(T1−1)T1(T1+1)

6T (T−2T1−1)
T1(T1+1)(T−T1−1)(T−T1)

12T(T 2−3TT1+3T 2
1−1)

(T1−1)T1(T1+1)(T−T1−1)(T−T1)(T−T1+1)

 . (23)

Consider the expectation of right hand side of (14) using (15) and (16). The expectation of
(1,1) element equal to (see KT):

E[(1, 1) element] =
T 2

2
γ0 + o(T 2), (24)

Similarly for the (1,2) element (see KT):

E[(1, 2) element] =
T 3

6
γ0 + o(T 3), (25)

Consider (1,3) element.

E[(1, 3) element] = E

[
(υT − υ0)

T∑
t=1

(υt − υ0)
t∑

s=1

DUs

]
(26)

=
T∑
t=1

γT−t

t∑
s=1

DUs − γT
T∑
t=1

t∑
s=1

DUt −
T∑
t=1

γt

t∑
s=1

DUt + γ0

T∑
t=1

t∑
s=1

DUt

=
T 2(1− λ1)2)

2
γ0 + o(T 2),

as γt absolutely summable and γT = o(1), and also using the equation (17). Similarly expectation
of (1,4) element (we use (18)):

E[(1, 4) element] =
T 3(1− λ1)3)

6
γ0 + o(T 3). (27)
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As in KT (2,1) and (2,2) elements are o(T 3) and o(T 4), respectively. Clearly that (2,3) and
(2,4) elements have the same orders o(T 3) and o(T 4), respectively, becauseDUt andDTt have the
same orders as constant and trend, respectively.

Elements of third row of matrix differ that in corresponding expressions γ0 replaces on γT1 , but
as T1 > p then γT1 = o(1). Then elements of third row are o(T 2), o(T 3), o(T 2), o(T 3). Elements of
fourth row equal to corresponding elements of second row as they have the same order. Hence we
can write the expectation as

E

[(
T∑
t=1

dt∆υt

)(
T∑
t=1

t∑
s=1

∆υs

t∑
s=1

d′s

)]
=

T 2

2
γ0 + o(T 2) T 3

6
γ0 + o(T 3) T 2(1−λ1)2

2
γ0 + o(T 2) T 3(1−λ1)3

6
γ0 + o(T 3)

o(T 3) o(T 4) o(T 3) o(T 4)
o(T 2) o(T 3) o(T 2) o(T 3)
o(T 3) o(T 4) o(T 3) o(T 4)

 (28)

Then using (23) и (28) we obtain:

E[R12] = 2
−λ2

1γ0 + 3λ3
1γ0 − 3λ4

1γ0 + λ5
1γ0

T (λ1 − 1)3λ2
1

+ o(T−1) =
2

T
γ0 + o(T−1). (29)

Consider the third term of R13:

E[R13] =
1

T 2
tr


(

T∑
t=1

dtd
′
t

)−1( T∑
t=1

t∑
s=1

ds

t∑
s=1

d′s

)(
T∑
t=1

dtd
′
t

)−1

E

[
T∑
t=1

dt∆υt

T∑
t=1

∆υtd
′
t

] .

(30)
It can be shown using (15) and the fact that γT1 and γT−T1 are o(1) that

E

[
T∑
t=1

dt∆υt

T∑
t=1

∆υtd
′
t

]
=

2γ0 + o(1) Tγ0 + o(T ) γ0 + o(1) T (1− λ1)γ0 + o(T )
Tγ0 + o(T ) T 2γ0 + o(T 2) Tγ0 + o(T ) T 2(1− λ1)γ0 + o(T 2)
γ0 + o(1) Tγ0 + o(T ) 2γ0 + o(1) T (1− λ1)γ0 + o(T )

T (1− λ1)γ0 + o(T ) T 2(1− λ1)γ0 + o(T 2) T (1− λ1)γ0 + o(T ) T 2(1− λ1)2γ0 + o(T 2)


(31)

Consider the componentDD :=
(∑T

t=1 dtd
′
t

)−1 (∑T
t=1

∑t
s=1 ds

∑t
s=1 d

′
s

)(∑T
t=1 dtd

′
t

)−1

. We

can show that (
T∑
t=1

t∑
s=1

ds

t∑
s=1

d′s

)
= (ξ1, ξ2, ξ3, ξ4),
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where

ξ1 =


T (T+1)(2T+1)

6
T (T+1)(T+2)(3T+1)

24
(T−T1)(T−T1+1)(2T+T1+1)

6
(T−T1)(T−T1+1)(T−T1+2)(3T+T1+1)

24

 ,

ξ2 =


T (T+1)(T+2)(3T+1)

24
T (T+1)(T+2)(3T 2+6T+1)

60
(T−T1)(T−T1+1)(3T 2+2TT1+7T+T 2

1 +3T1+2)
24

(T−T1)(T−T1+1)(T−T1+2)(6T 2+3TT1+12T+T 2
1 +3T1+2)

120

 ,

ξ3 =


(T−T1)(T−T1+1)(2T+T1+1)

6
(T−T1)(T−T1+1)(3T 2+2TT1+7T+T 2

1 +3T1+2)
24

(2T−2T1+1)(T−T1)(T−T1+1)
6

(3T−3T1+1)(T−T1)(T−T1+1)(T−T1+2)
24

 ,

ξ4 =


(T−T1)(T−T1+1)(T−T1+2)(3T+T1+1)

24
(T−T1)(T−T1+1)(T−T1+2)(6T 2+3TT1+12T+T 2

1 +3T1+2)
120

(3T−3T1+1)(T−T1)(T−T1+1)(T−T1+2)
24

(T−T1)(T−T1+1)(T−T1+2)(3T 2−6TT1+6T+3T 2
1−6T1+1)

60

 ,

Thus using (23),

DD = (κ1, κ2, κ3, κ4), (32)

where

κ1 =


15TT 2

1−15TT1+2T 3
1 +22T 2

1−8T1+2

15(T1−1)T1

−11T 2
1−5T1+6

10(T1−1)T1

− (T1−2)(T1+2)
30T1

(T1+2)(T1+3)
10(T1−1)T1

 ,

κ2 =


−11T 2

1−5T1+6

10(T1−1)T1
6(T 2

1 +1)
5(T1−1)T1(T1+1)

− (T1−3)(T1−2)
10T1(T1+1)

− 6(T 2
1 +1)

5(T1−1)T1(T1+1)

 ,

κ3 =


− (T1−2)(T1+2)

30T1

− (T1−3)(T1−2)
10T1(T1+1)

2T(T 2T 2
1 +T 2T1−2TT 3

1−3TT 2
1 +7TT1−T+T 4

1 +2T 3
1−7T 2

1 +2T1+1)
15T1(T1+1)(T−T1−1)(T−T1)

− 3T(TT1−T−T 2
1 +2T1+1)

5T1(T1+1)(T−T1−1)(T−T1)

 ,

13



κ4 =


(T1+2)(T1+3)
10(T1−1)T1

− 6(T 2
1 +1)

5(T1−1)T1(T1+1)

− 3T(TT1−T−T 2
1 +2T1+1)

5T1(T1+1)(T−T1−1)(T−T1)
6T(T 2T 2

1 +T 2−2TT 3
1−4TT1+T 4

1 +4T 2
1−1)

5(T1−1)T1(T1+1)(T−T1−1)(T−T1)(T−T1+1)

 ,

We then obtain that

E[R13] =
19

15T
γ0 + o(T−1); (33)

Combining (13), (29) and (33) we obtain

E[R1] =
19

15T
γ0 + o(T−1). (34)

We now consider the expectation of R2. We decompose R2 into four terms (see KT) except for
the scalar 2ψ(1)/T 2:

R2 = R21 −R22 −R23 +R24, (35)

where

R21 =
t∑
t=1

T∑
s=1

es

t∑
s=1

∆υs

R22 =
T∑
t=1

t∑
s=1

∆υs

t∑
s=1

d′s

(
T∑
t=1

dtd
′
t

)−1 T∑
t=1

dtet

R23 =
T∑
t=1

t∑
s=1

es

t∑
s=1

d′s

(
T∑
t=1

dtd
′
t

)−1 T∑
t=1

dt∆υt

R24 =
T∑
t=1

etd
′
t

(
T∑
t=1

dtd
′
t

)−1( T∑
t=1

t∑
s=1

ds

t∑
s=1

d′s

)(
T∑
t=1

dtd
′
t

)−1 T∑
t=1

dt∆υt

The expectation of the first term is (see KT):

E[R21] = σ2
eT

T−1∑
t=0

(
1− t

T

)
ψ̃t (36)

Consider the second term:

E[R22] = tr


(

T∑
t=1

dtd
′
t

)−1

E

[
T∑
t=1

dtet

T∑
t=1

t∑
s=1

∆υs

t∑
s=1

d′s

] . (37)

Next we use Lemma provided in KT with some generalizations for dummy variables:

14



Lemma 2 Let ft and gt be deterministic sequences for t = 1, . . . , T . Then

E

[(
T∑
t=1

ftet

)(
T∑
t=1

gtυt

)]
= σ2

e

T−1∑
t=0

(
T−t∑
s=1

fsgs+t

)
ψ̃t, (38)

E

[(
T∑
t=1

ftet

)(
T∑
t=1

gt∆υt

)]
= σ2

e

T−1∑
t=0

(
T−t∑
s=1

fsgs+t −
T−t−1∑
s=1

fsgs+t+1

)
ψ̃t, (39)

T∑
t=1

ft

t∑
s=1

es =
T∑
t=1

(
T∑
s=t

fs

)
et (40)

Also, because ft can be dummy variable being zero up to the moment T1, therefore for
convenience it is necessary to transform (40) as follows:

T∑
t=1

ft

t∑
s=1

es =
T∑
t=1

(
T∑

s=T1+1

fs

)
et −

T∑
t=1

(
t∑

s=1

f bs−1

)
et, (41)

where the expression in a bracket of the second term of right hand side is dummy variable
(it is marked by the top index b, summation on all t is equivalent to summation from the

moment of T1 + 1) while expression
(∑T

s=T1+1 fs

)
in the first term is a constant and does

not depend on t.

Using (38) (see KT), we obtain the following elements of expectation of right hand side of (37):
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E[(1, 1) element] = σ2
eT

T−1∑
t=0

(
T 2

2
− t2

2

)
ψ̃t +O(T )

E[(1, 2) element] = σ2
eT

T−1∑
t=0

(
T 3

6
− t3

6

)
ψ̃t +O(T 2)

E[(2, 1) element] = σ2
eT

T−1∑
t=0

(
t3

6
− tT 2

2
+
T 3

3

)
ψ̃t +O(T 2)

E[(2, 2) element] = σ2
eT

T−1∑
t=0

(
t4

24
− tT 3

6
+
T 4

8

)
ψ̃t +O(T 3)

E[(3, 1) element] = σ2
eT

T−1∑
t=0

(
T 2

2
− 1

2
(t+ λ1T )2

)
ψ̃t +O(T )

E[(3, 2) element] = σ2
eT

T−1∑
t=0

(
T 3

6
− 1

6
(t+ λ1T )3

)
ψ̃t +O(T 2)

E[(4, 1) element] = σ2
eT

T−1∑
t=0

(
−1

2
T 2(t+ λ1T ) +

1

6
(t+ λ1T )3 +

T 3

3

)
ψ̃t +O(T 2)

E[(4, 2) element] = σ2
eT

T−1∑
t=0

(
−1

6
T 3(t+ λ1T ) +

1

24
(t+ λ1T )4 +

T 4

8

)
ψ̃t +O(T 3)

E[(1, 3) element] = σ2
eT

T−1∑
t=0

(
1

2
(1− λ1)2T 2

)
ψ̃t +O(T )

E[(1, 4) element] = σ2
eT

T−1∑
t=0

(
1

6
(1− λ1)3T 3

)
ψ̃t +O(T 2)

E[(2, 3) element] = σ2
eT

T−1∑
t=0

(
1

6
(1− λ1)2(λ1 + 2)T 3 − 1

2
(1− λ1)2tT 2

)
ψ̃t +O(T 2)

E[(2, 4) element] = σ2
eT

T−1∑
t=0

(
1

24
(1− λ1)3(λ1 + 3)T 4 − 1

6
(1− λ1)3tT 3

)
ψ̃t +O(T 3)

E[(3, 3) element] = σ2
eT

T−1∑
t=0

(
1

2
(1− λ1)2T 2 − t2

2

)
ψ̃t +O(T )

E[(3, 4) element] = σ2
eT

T−1∑
t=0

(
1

6
(1− λ1)3T 3 − t3

6

)
ψ̃t +O(T 2)

E[(4, 3) element] = σ2
eT

T−1∑
t=0

(
t3

6
− 1

2
(1− λ1)2tT 2 +

1

3
(1− λ1)3T 3

)
ψ̃t +O(T 2)

E[(4, 4) element] = σ2
eT

T−1∑
t=0

(
t4

24
− 1

6
(1− λ1)3tT 3 +

1

8
(1− λ1)4T 4

)
ψ̃t +O(T 3)
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Using (23) we obtain the final expression of expectation of the second term:

E[R22] = σ2
eT

T−1∑
t=0

1

2

(
1 + f1

t

T
+ f2

t2

T 2
+ f3

t4

T 4

)
ψ̃t +O(1), (42)

where f1, f2 and f3 are some functions which may depend only on λ1.
Consider the R23 term:

E[R23] = tr


(

T∑
t=1

dtd
′
t

)−1

E

[(
T∑
t=1

dt∆υt

)(
T∑
t=1

t∑
s=1

es

t∑
s=1

d′s

)] . (43)

Using (40) and (41) we can show that:

T∑
t=1

t∑
s=1

es

t∑
s=1

d′s =

[
T∑
t=1

(
T 2 − t2

2
+O(T )

)
et,

T∑
t=1

(
T 3 − t3

6
+O(T 2)

)
et,

T∑
t=1

(
T 2(1− λ1)2

2
+O(T )

)
et −

T∑
t=1

(
(t− λ1T )2

2
+O(T )

)
et,

T∑
t=1

(
T 3(1− λ1)3

6
+O(T 2)

)
et −

T∑
t=1

(
(t− λ1T )3

6
+O(T 2)

)
et,

]
. (44)

Notice that in third and fourth elements the second terms are equal to 0 up to time T1, i.e. they
are dummy variables. Therefore the calculation of interior sum in (38) and (39) the calculation is
performed given this fact.

Then using (39) we obtain the following elements of expectation of right hand side of (42):
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E[(1, 1) element] = σ2
eT

T−1∑
t=0

(
tT − t2

2

)
ψ̃t +O(T )

E[(1, 2) element] = σ2
eT

T−1∑
t=0

(
t3

6
− t2T

2
+
tT 2

2

)
ψ̃t +O(T 2)

E[(2, 1) element] = σ2
eT

T−1∑
t=0

(
−t

3

6
+ tT 2 − T 3

3

)
ψ̃t +O(T 2)

E[(2, 2) element] = σ2
eT

T−1∑
t=0

(
t4

24
− t2T 2

4
+
tT 3

2
− T 4

8

)
ψ̃t +O(T 3)

E[(3, 1) element] = σ2
eT

T−1∑
t=0

(
−λ1tT + tT +

λ2
1T

2

2
− T 2

2

)
ψ̃t +O(T )

E[(3, 2) element] = σ2
eT

T−1∑
t=0

(
1

2
λ1t

2T − t2T

2
− 1

2
λ2

1tT
2 +

tT 2

2
+
λ3

1T
3

6
− T 3

6

)
ψ̃t +O(T 2)

E[(4, 1) element] = σ2
eT

T−1∑
t=0

(
1

2
λ2

1tT
2 − λ1tT

2 +
tT 2

2
− 1

6
λ3

1T
3 +

λ1T
3

2
− T 3

3

)
ψ̃t +O(T 2)

E[(4, 2) element] = σ2
eT

T−1∑
t=0

(
−1

4
λ2

1t
2T 2 +

1

2
λ1t

2T 2 − t2T 2

4

+
1

6
λ3

1tT
3 − 1

2
λ1tT

3 +
tT 3

3
− 1

24
λ4

1T
4 +

λ1T
4

6
− T 4

8

)
ψ̃t +O(T 3)

E[(1, 3) element] = σ2
eT

T−1∑
t=0

(
−t

2

2
+ Tt− Tλ1t

)
ψ̃t +O(T )

E[(1, 4) element] = σ2
eT

T−1∑
t=0

(
t3

6
− Tt2

2
+

1

2
Tλ1t

2 +
T 2t

2
+

1

2
T 2λ2

1t− T 2λ1t

)
ψ̃t +O(T 2)

E[(2, 3) element] = σ2
eT

T−1∑
t=0

(
−t

3

6
− 1

2
Tλ1t

2 + T 2t− T 2λ1t−
T 3

3
− T 3λ3

1

6
+
T 3λ1

2

)
ψ̃t +O(T 2)

E[(2, 4) element] = σ2
eT

T−1∑
t=0

(
t4

24
+

1

6
Tλ1t

3 − T 2t2

4
+

1

4
T 2λ2

1t
2 +

T 3t

2
+

1

2
T 3λ2

1t− T 3λ1t

−T
4

8
+
T 4λ4

1

24
− T 4λ2

1

4
+
T 4λ1

3

)
ψ̃t +O(T 3)
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E[(3, 3) element] = σ2
eT

T−1∑
t=0

(
−t

2

2
+ Tt− Tλ1t

)
ψ̃t +O(T )

E[(3, 4) element] = σ2
eT

T−1∑
t=0

(
t3

6
− Tt2

2
+

1

2
Tλ1t

2 +
T 2t

2
+

1

2
T 2λ2

1t− T 2λ1t

)
ψ̃t +O(T 2)

E[(4, 3) element] = σ2
eT

T−1∑
t=0

(
−t

3

6
− 1

2
Tλ1t

2 + T 2t− T 2λ1t−
T 3

3
− T 3λ3

1

6
+
T 3λ1

2

)
ψ̃t +O(T 2)

E[(4, 4) element] = σ2
eT

T−1∑
t=0

(
t4

24
+

1

6
Tλ1t

3 − T 2t2

4
+

1

4
T 2λ2

1t
2 +

T 3t

2
+

1

2
T 3λ2

1t− T 3λ1t

−T
4

8
+
T 4λ4

1

24
− T 4λ2

1

4
+
T 4λ1

3

)
ψ̃t +O(T 3)

Thus using (23) we obtain the final expression for R23:

E[R23] = σ2
eT

T−1∑
t=0

1

2

(
1 + f4

t

T
+ f5

t2

T 2
+ f6

t4

T 4

)
ψ̃t +O(1), (45)

where f4, f5 and f6 are some functions determining as for (42).
Similarly, we obtain an expression for R24:

E[R24] = tr

{
DD × E

[(
T∑
t=1

dt∆υt

)(
T∑
t=1

etd
′
t

)]}
. (46)

where the expression for DD has been obtained in (32). Considering expectation in right hand
side and using (39) we obtain:

E

[(
T∑
t=1

dt∆υt

)(
T∑
t=1

etd
′
t

)]
= σ2

e(η1, η2, η3, η4), (47)

where

η1 =


∑T−1

t=0 ψ̃t∑T−1
t=0 tψ̃t +O(1)

0
0

 ,

η2 =


∑T−1

t=0 (T − t)ψ̃t∑T−1
t=0

T 2−t2
2

ψ̃t +O(T )∑T−1
t=0 (T − λ1T )ψ̃t +O(T )∑T−1
t=0

(λ1−1)2T 2

2
ψ̃t +O(T )

 ,

η3 =


∑T−1

t=0 ψ̃t∑T−1
t=0 (t+ λ1T )ψ̃t +O(1)∑T−1

t=0 ψ̃t∑T−1
t=0 tψ̃t +O(1)

 ,
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η4 =


∑T−1

t=0 (T − λ1T − t)ψ̃t +O(1)∑T−1
t=0

1
T 2(1+λ1)2−t2 ψ̃t∑T−1

t=0 (T − λ1T − t)ψ̃t +O(1)∑T−1
t=0

1
T 2(1−λ1)2−t2 ψ̃t +O(T )

 ,

Using obtained expression of DD matrix it can be shown that:

E[R24] = σ2
eT

T−1∑
t=0

1

2

(
19

15
+ f7

t

T
+ f8

t2

T 2

)
ψ̃t +O(1), (48)

where f7 and f8 are defined as earlier.
Further, from (36), (42), (45) and (48) we obtain:

E[R2] =
2σ2

eψ(1)

T

T−1∑
t=0

(
19

30
+ f6

t

T
+ f7

t2

T 2
+ f8

t4

T 4

)
ψ̃t + o(T−1). (49)

As
∑∞

j=0 |ψ̃j| < ∞ the sum in (49) converges to
∑∞

j=0 (19/30)ψ̃j . Also, notice that ψ(1) =

1/φ(1) and
∑∞

j=0 ψ̃t = ψ′(1) =
(

1
φ(1)

)′
= − φ′(1)

φ2(1)
we obtain:

E[R2] = − 1

T

19

15

σ2
eφ
′(1)

φ3(1)
. (50)

�
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Figure 1. Size and power, known break date
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Figure 2. Size and power, unknown break date
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